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1 Non-interacting fermions

A system of non-interacting fermions is specified by a one particle Hilbert spaceh and a one-particle Hamiltonian
h, a self-adjoint operator onh. Within theC∗-algebraicapproach, observables of this system are element of the
C∗-algebra ofCanonicalAnticommutation RelationsCAR(h). Their time evolution is given by the group of
Bogoliubovautomorphisms

τ t(a(f)) = a(eithf),

associated toh. Thus, the dynamics of the system is described by theC∗-dynamical system(CAR(h), τ). Taking
gauge-invariance into account we should in fact restrict the algebra to its gauge-invariant partCAR0(h) (see
Section 2 in [Fock and non-Fock states on CAR-algebras]). Itis often more convenient to keep the full CAR
algebra and consider only gauge-invariant states instead.

2 Gauge-invariant quasi-free states

In theFock representation the dynamical groupτ as well as the gauge groupϑ are unitarily implemented by the
second quantized HamiltonianH = dΓ(h) and the number operatorN = dΓ(I),

πF (τ t(A)) = eitHπF (A)e−itH , πF (ϑϕ(A)) = eiϕNπF (A)e−iϕN .

The Hamiltonianh of a single fermion confined in a finite volumeΛ ⊂ R
d typically has purely discrete

spectrum ande−βh is trace class for anyβ > 0. Using the identity

det(I + A) = tr(Γ(A)), (1)

we conclude thattr(e−β(H−µN)) = det(I + e−β(h−µ)) for any β > 0 andµ ∈ R. Hencee−β(H−µN) is also
trace class and the Gibbs grand canonical ensemble at inverse temperatureβ and chemical potentialµ is a gauge-
invariantFockstate with density matrix

ρβµ =
e−β(H−µN)

tr(e−β(H−µN))
.

It is the uniqueβ-KMS state onCAR(h) for the dynamicst 7→ τ t ◦ ϑ−µt. Using again identity (1) a simple
calculation shows that thecharacteristicfunction of this state is given by

Eβµ(u) = det(I + (u − I)fβµ(h)), (2)

where

fβµ(ε) =
1

1 + eβ(ε−µ)
,

is the Fermi-Dirac distribution function.

1



Sinceu − I is finite rank the characteristic function (2) still makes sense in the infinite volume limit, despite
of the fact that the Boltzmann weighte−β(H−µN) is no more trace class in this limit. One can show directly that
(2) is the characteristic function of the uniqueβ-KMS state for the groupt 7→ τ t ◦ ϑ−µt. Its restriction to the
gauge-invariant sub-algebraCAR0(h) is therefore a(τ, β)-KMS state.

More generally one has the following

Theorem 1 LetT be a self-adjoint operator on the Hilbert spaceh. If 0 ≤ T ≤ I thenE(u) = det(I +(u−I)T )
is the characteristic function of a gauge-invariant stateωT onCAR(h). ωT is called the gauge-invariant quasi-free
state generated byT . Equivalent ways to characterize this state are

1. For all f1, . . . , fn ∈ h andg1, . . . , gm ∈ h one has

ωT (a∗(f1) · · · a∗(fn)a(gm) · · · a(g1)) = δnm det{(gi|Tfj)}.

2. For f ∈ h setϕ(f) = 2−1/2(a(f) + a∗(f)). The Wick theorem

ωT (ϕ(f1) · · ·ϕ(f2n+1)) = 0,

ωT (ϕ(f1) · · ·ϕ(f2n)) =
∑

π∈Pn

ǫ(π)

n
∏

j=1

ωT (ϕ(fπ(2j−1))ϕ(fπ(2j))),

holds. In the last expression, the sum runs over the setPn of pairings, i.e., permutationsπ of {1, . . . , 2n}
such thatπ(2j − 1) < π(2j) and π(2j − 1) < π(2j + 1). Moreover,ǫ(π) denotes the signature of the
permutationπ.

The stateωT also has an information theoretic characterization: it hasmaximal entropy among all the gauge-
invariant statesν such thatν(a∗(f)a(g)) = (g, Tf) in the following sense. For a finite dimensional subspace
K ⊂ h define the entropy

S(ν|K) = −tr(ρ log ρ)

whereρ is the density matrix of the restriction ofν to the finite dimensional algebraCAR(K). Then

S(ωT |K) = max
ν∈ET

S(ν|K),

whereET denotes the set of gauge-invariant statesν such thatν(a∗(f)a(g)) = (g, Tf). This follows from a
simple adaptation of the proof of Proposition 1a in [LR].

We refer the reader to [A] and [BR2] for more information on quasi-free states onCAR(h).

3 Araki-Wyss representation

Let ωT be the gauge-invariant quasi-free state onCAR(h) generated byT . The associated GNS representation,
which we denote by(HT , πT ,ΩT ), was first constructed by Araki and Wyss in [AW]. It can be described as
follows:

1. HT = Γa(h1 ⊕ h2) ⊂ Γa(h ⊕ h) whereh1 = (Ran(I − T ))cl andh2 = (RanT )cl.

2. ΩT = ΩF, the Fock vacuum vector.

3. The∗-morphismπT is given by

πT (a(f)) = a
(√

I − Tf ⊕ 0
)

+ a∗

(

0 ⊕
√

Tf
)

,

where · denotes an arbitrary complex conjugation onh.
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Using theexponentiallaw for fermionsU : Γa(h1 ⊕h2) → Γa(h1)⊗Γa(h2) an equivalent representation with
cyclic vectorUΩT = ΩF ⊗ ΩF is obtained. It is explicitly given by

UπT (a(f))U∗ = a
(√

I − Tf
)

⊗ I + Θ ⊗ a∗

(√
Tf

)

,

whereΘ = Γ(−I) = (−1)N . In the limiting casesT = 0 andT = I which correspond to thevacuumstatevac
and to thefilled Fermiseafull the Araki-Wyss representation degenerates to the Fock and anti-Fock representations
πF andπAF .

The reader should consult [A] and [D] for a detailed introduction to quasi-free representations ofCAR(h).

4 Enveloping von Neumann algebra

The following theorem summarizes some interesting features of theenvelopingvon NeumannalgebraMT =
πT (CAR(h))′′ of a gauge-invariant quasi-free stateωT .

Theorem 2 1. ωT is primary, i.e., its enveloping von Neumann algebra is afactor. MT is of type

I if eitherh is finite dimensional orh is infinite dimensional andT = 0 or T = I.

II if h is infinite dimensional andT = I/2.

IIIλ if h is infinite dimensional andT = (I + λ±1)−1 for someλ ∈]0, 1[.

III1 if the continuous spectrum ofT is not empty.

2. ωT is modular, i.e., the cyclic vectorΩT is separating forMT , if and only ifKerT = Ker(I − T ) = {0}.

3. ωT andωS are quasi-equivalent if and only if the operatorsT 1/2 − S1/2 and(I − T )1/2 − (I − S)1/2 are
Hilbert-Schmidt.

If Ker T = Ker(I − T ) = {0} thenmodulartheory applies toMT (see [Tomita-Takesaki theory]). OnHT

there exist an anti-unitary involutionJ (the modular conjugation) and a positive operator∆ (the modular operator)
such that

J∆1/2AΩT = A∗ΩT ,

for all A ∈ MT . These operators are explicitly given by

J = (−1)N(N−1)/2Γ(j), ∆ = Γ(es ⊕ e−s),

wherej : f ⊕ g 7→ g ⊕ f ands = log T (I − T )−1.

References

[A] Araki, H.: Quasifree States of CAR and Bogoliubov Automorphisms. Publ. RIMS Kyoto Univ.6, 384
(1970/71).

[AW] Araki, H., Wyss, W.: Representations of canonical anticommutation relations. Helv. Phys. Acta37, 136
(1964).

[BR2] Bratteli, O., Robinson D. W.:Operator Algebras and Quantum Statistical Mechanics 2.Second edition,
Springer, Berlin (2002).

[D] Derezínski, J.: Introduction to representations of canonical commutation and anticommutation relations.
In J. Derezínski and H. Siedentop, editors,Large Coulomb Systems - QED.Lecture Notes in Physics695,
145. Springer, New York, (2006).

3



[LR] Lanford III, O.E., Robinson, D.W.: Approach to equilibrium of free quantum systems. Commun. Math.
Phys.24, 193 (1972).

4


