Araki-Wyss representation

CLAUDE-ALAIN PILLET

CPT-CNRS, UMR 6207 Université du Sud Toulon-Var B.P. 20132 83957 La Garde Cedex, France pillet@univ-tln.fr

1 Non-interacting fermions

A system of non-interacting fermions is specified by a one particle Hilbert space \mathfrak{h} and a one-particle Hamiltonian h, a self-adjoint operator on \mathfrak{h} . Within the <u>C</u>*-algebraic approach, observables of this system are element of the C*-algebra of <u>Canonical Anticommutation Relations</u> CAR(\mathfrak{h}). Their time evolution is given by the group of <u>Bogoliubov automorphisms</u>

$$\tau^t(a(f)) = a(\mathrm{e}^{\mathrm{i}th}f),$$

associated to h. Thus, the dynamics of the system is described by the C^* -dynamical system (CAR(\mathfrak{h}), τ). Taking gauge-invariance into account we should in fact restrict the algebra to its gauge-invariant part CAR₀(\mathfrak{h}) (see Section 2 in [Fock and non-Fock states on CAR-algebras]). It is often more convenient to keep the full CAR algebra and consider only gauge-invariant states instead.

2 Gauge-invariant quasi-free states

In the <u>Fock representation</u> the dynamical group τ as well as the gauge group ϑ are unitarily implemented by the second quantized Hamiltonian $H = d\Gamma(h)$ and the number operator $N = d\Gamma(I)$,

$$\pi_F(\tau^t(A)) = e^{itH} \pi_F(A) e^{-itH}, \pi_F(\vartheta^{\varphi}(A)) = e^{i\varphi N} \pi_F(A) e^{-i\varphi N}$$

The Hamiltonian h of a single fermion confined in a finite volume $\Lambda \subset \mathbb{R}^d$ typically has purely discrete spectrum and $e^{-\beta h}$ is trace class for any $\beta > 0$. Using the identity

$$\det(I+A) = \operatorname{tr}(\Gamma(A)),\tag{1}$$

we conclude that $\operatorname{tr}(e^{-\beta(H-\mu N)}) = \det(I + e^{-\beta(h-\mu)})$ for any $\beta > 0$ and $\mu \in \mathbb{R}$. Hence $e^{-\beta(H-\mu N)}$ is also trace class and the Gibbs grand canonical ensemble at inverse temperature β and chemical potential μ is a gauge-invariant Fock state with density matrix

$$\rho_{\beta\mu} = \frac{\mathrm{e}^{-\beta(H-\mu N)}}{\mathrm{tr}(\mathrm{e}^{-\beta(H-\mu N)})}.$$

It is the unique $\underline{\beta}$ -KMS state on CAR(\mathfrak{h}) for the dynamics $t \mapsto \tau^t \circ \vartheta^{-\mu t}$. Using again identity (1) a simple calculation shows that the characteristic function of this state is given by

$$E_{\beta\mu}(u) = \det(I + (u - I)f_{\beta\mu}(h)), \tag{2}$$

where

$$f_{\beta\mu}(\varepsilon) = \frac{1}{1 + \mathrm{e}^{\beta(\varepsilon-\mu)}}$$

is the Fermi-Dirac distribution function.

Since u - I is finite rank the characteristic function (2) still makes sense in the infinite volume limit, despite of the fact that the Boltzmann weight $e^{-\beta(H-\mu N)}$ is no more trace class in this limit. One can show directly that (2) is the characteristic function of the unique β -KMS state for the group $t \mapsto \tau^t \circ \vartheta^{-\mu t}$. Its restriction to the gauge-invariant sub-algebra CAR₀(\mathfrak{h}) is therefore a (τ, β) -KMS state.

More generally one has the following

Theorem 1 Let T be a self-adjoint operator on the Hilbert space \mathfrak{h} . If $0 \leq T \leq I$ then $E(u) = \det(I + (u - I)T)$ is the characteristic function of a gauge-invariant state ω_T on CAR(\mathfrak{h}). ω_T is called the gauge-invariant quasi-free state generated by T. Equivalent ways to characterize this state are

1. For all $f_1, \ldots, f_n \in \mathfrak{h}$ and $g_1, \ldots, g_m \in \mathfrak{h}$ one has

 $\omega_T(a^*(f_1)\cdots a^*(f_n)a(g_m)\cdots a(g_1)) = \delta_{nm} \det\{(g_i|Tf_j)\}.$

2. For $f \in \mathfrak{h}$ set $\varphi(f) = 2^{-1/2}(a(f) + a^*(f))$. The Wick theorem

$$\omega_T(\varphi(f_1)\cdots\varphi(f_{2n+1})) = 0,$$

$$\omega_T(\varphi(f_1)\cdots\varphi(f_{2n})) = \sum_{\pi\in\mathcal{P}_n}\epsilon(\pi)\prod_{j=1}^n\omega_T(\varphi(f_{\pi(2j-1)})\varphi(f_{\pi(2j)}))$$

holds. In the last expression, the sum runs over the set \mathcal{P}_n of pairings, i.e., permutations π of $\{1, \ldots, 2n\}$ such that $\pi(2j-1) < \pi(2j)$ and $\pi(2j-1) < \pi(2j+1)$. Moreover, $\epsilon(\pi)$ denotes the signature of the permutation π .

The state ω_T also has an information theoretic characterization: it has maximal entropy among all the gaugeinvariant states ν such that $\nu(a^*(f)a(g)) = (g, Tf)$ in the following sense. For a finite dimensional subspace $\mathfrak{K} \subset \mathfrak{h}$ define the entropy

$$S(\nu|\mathfrak{K}) = -\mathrm{tr}(\rho \log \rho)$$

where ρ is the density matrix of the restriction of ν to the finite dimensional algebra CAR(\mathfrak{K}). Then

$$S(\omega_T|\mathfrak{K}) = \max_{\nu \in E_T} S(\nu|\mathfrak{K}),$$

where E_T denotes the set of gauge-invariant states ν such that $\nu(a^*(f)a(g)) = (g, Tf)$. This follows from a simple adaptation of the proof of Proposition 1a in [LR].

We refer the reader to [A] and [BR2] for more information on quasi-free states on $CAR(\mathfrak{h})$.

3 Araki-Wyss representation

Let ω_T be the gauge-invariant quasi-free state on CAR(\mathfrak{h}) generated by T. The associated GNS representation, which we denote by $(\mathcal{H}_T, \pi_T, \Omega_T)$, was first constructed by Araki and Wyss in [AW]. It can be described as follows:

- 1. $\mathcal{H}_T = \Gamma_{\mathbf{a}}(\mathfrak{h}_1 \oplus \mathfrak{h}_2) \subset \Gamma_{\mathbf{a}}(\mathfrak{h} \oplus \mathfrak{h})$ where $\mathfrak{h}_1 = (\operatorname{Ran}(I T))^{\operatorname{cl}}$ and $\mathfrak{h}_2 = (\operatorname{Ran}T)^{\operatorname{cl}}$.
- 2. $\Omega_T = \Omega_F$, the Fock vacuum vector.
- 3. The *-morphism π_T is given by

$$\pi_T(a(f)) = a\left(\sqrt{I-T}f \oplus 0\right) + a^*\left(0 \oplus \overline{\sqrt{T}f}\right),$$

where $\overline{\cdot}$ denotes an arbitrary complex conjugation on \mathfrak{h} .

Using the <u>exponential law for fermions</u> $U : \Gamma_{a}(\mathfrak{h}_{1} \oplus \mathfrak{h}_{2}) \to \Gamma_{a}(\mathfrak{h}_{1}) \otimes \Gamma_{a}(\mathfrak{h}_{2})$ an equivalent representation with cyclic vector $U\Omega_{T} = \Omega_{F} \otimes \Omega_{F}$ is obtained. It is explicitly given by

$$U\pi_T(a(f))U^* = a\left(\sqrt{I-T}f\right) \otimes I + \Theta \otimes a^*\left(\sqrt{T}f\right),$$

where $\Theta = \Gamma(-I) = (-1)^N$. In the limiting cases T = 0 and T = I which correspond to the <u>vacuum state</u> vac and to the <u>filled Fermi sea</u> full the Araki-Wyss representation degenerates to the Fock and anti-Fock representations π_F and π_{AF} .

The reader should consult [A] and [D] for a detailed introduction to quasi-free representations of $CAR(\mathfrak{h})$.

4 Enveloping von Neumann algebra

The following theorem summarizes some interesting features of the <u>enveloping von Neumann algebra</u> $\mathfrak{M}_T = \pi_T(\operatorname{CAR}(\mathfrak{h}))''$ of a gauge-invariant quasi-free state ω_T .

Theorem 2 1. ω_T is primary, i.e., its enveloping von Neumann algebra is a factor. \mathfrak{M}_T is of type

- I if either \mathfrak{h} is finite dimensional or \mathfrak{h} is infinite dimensional and T = 0 or T = I.
- II if \mathfrak{h} is infinite dimensional and T = I/2.
- III_{λ} if \mathfrak{h} is infinite dimensional and $T = (I + \lambda^{\pm 1})^{-1}$ for some $\lambda \in]0, 1[$.
- III_1 if the continuous spectrum of T is not empty.
- 2. ω_T is modular, i.e., the cyclic vector Ω_T is separating for \mathfrak{M}_T , if and only if $\operatorname{Ker} T = \operatorname{Ker}(I T) = \{0\}$.
- 3. ω_T and ω_S are <u>quasi-equivalent</u> if and only if the operators $T^{1/2} S^{1/2}$ and $(I T)^{1/2} (I S)^{1/2}$ are *Hilbert-Schmidt*.

If Ker $T = \text{Ker}(I - T) = \{0\}$ then <u>modular theory</u> applies to \mathfrak{M}_T (see [Tomita-Takesaki theory]). On \mathcal{H}_T there exist an anti-unitary involution J (the modular conjugation) and a positive operator Δ (the modular operator) such that

$$J\Delta^{1/2}A\Omega_T = A^*\Omega_T,$$

for all $A \in \mathfrak{M}_T$. These operators are explicitly given by

$$J = (-1)^{N(N-1)/2} \Gamma(j), \quad \Delta = \Gamma(e^s \oplus e^{-\overline{s}}),$$

where $j: f \oplus g \mapsto \overline{g \oplus f}$ and $s = \log T(I - T)^{-1}$.

References

- [A] Araki, H.: Quasifree States of CAR and Bogoliubov Automorphisms. Publ. RIMS Kyoto Univ. 6, 384 (1970/71).
- [AW] Araki, H., Wyss, W.: Representations of canonical anticommutation relations. Helv. Phys. Acta 37, 136 (1964).
- [BR2] Bratteli, O., Robinson D. W.: *Operator Algebras and Quantum Statistical Mechanics 2.* Second edition, Springer, Berlin (2002).
- [D] Derezínski, J.: Introduction to representations of canonical commutation and anticommutation relations. In J. Derezínski and H. Siedentop, editors, *Large Coulomb Systems - QED*. Lecture Notes in Physics 695, 145. Springer, New York, (2006).

[LR] Lanford III, O.E., Robinson, D.W.: Approach to equilibrium of free quantum systems. Commun. Math. Phys. 24, 193 (1972).