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1 Non-interacting fermions

A system of non-interacting fermions is specified by a ond¢igdarHilbert spacey and a one-particle Hamiltonian

h, a self-adjoint operator ofp. Within the C*-algebraicapproach, observables of this system are element of the
C*-algebra ofCanonicalAnticommuation RelationsCAR(h). Their time evolution is given by the group of
Bogoliubovautomorphisms

(a(f)) = a(e™f),
associated téd. Thus, the dynamics of the system is described byCthelynamical systeniCAR(h), 7). Taking
gauge-invariance into account we should in fact restrietdlgebra to its gauge-invariant p&tARq(h) (see
Section 2 in [Fock and non-Fock states on CAR-algebras])s dtften more convenient to keep the full CAR
algebra and consider only gauge-invariant states instead.

2 Gauge-invariant quasi-free states

In the Fock representation the dynamical groumas well as the gauge groupare unitarily implemented by the
second quantized Hamiltonidih = dT"(h) and the number operatdf = dI'(1),

(7 (A)) = Hrp(A)e™ ™, mp(99(4)) = N (A)e N,

The Hamiltonianh of a single fermion confined in a finite volume c R¢ typically has purely discrete
spectrum and—"" is trace class for ang > 0. Using the identity

det(I + A) = tr(T(A)), )

we conclude thatr(e #(H=#N)) = det(I + e~ #h=1) for any 3 > 0 andu € R. Hencee P —1N) is also
trace class and the Gibbs grand canonical ensemble atén@rmperaturg and chemical potential is a gauge-

invariantFock state with density matrix
e BH—uN)

Pon = (e BEH—aN))"

It is the uniqueB-KMS state onCAR(h) for the dynamicg — 7t o 97+t Using again identity (1) a simple
calculation shows that theharacteristidunction of this state is given by

Epu(u) = det(I + (u — 1) fpu(h)), )

where
1

fﬁu(E) = m,

is the Fermi-Dirac distribution function.



Sinceu — [ is finite rank the characteristic function (2) still makess®in the infinite volume limit, despite
of the fact that the Boltzmann weight #(#—~N) js no more trace class in this limit. One can show directly tha
(2) is the characteristic function of the uniqdeKMS state for the group — ¢ o ¥~#¢. Its restriction to the
gauge-invariant sub-algeb€A R, (h) is therefore g, 3)-KMS state.

More generally one has the following

Theorem 1 LetT be a self-adjoint operator on the Hilbert spaigelf 0 < T' < I thenE(u) = det({ + (v —I)T)
is the characteristic function of a gauge-invariant stateon CAR (). wr is called the gauge-invariant quasi-free
state generated hYy. Equivalent ways to characterize this state are

1. Forall f1,..., f, € pandgy,..., g, € hone has
wr(a®(f1)---a*(fu)algm) - - a(gr)) = dnm det{(g:|T'f;)}-

2. For f € hsetp(f) = 27Y2(a(f) + a*(f)). The Wick theorem

wT(‘)O(fl) T @(f2n+1)) = 0,
wr(e(fi) - e(fen)) = Z €(7T)HWT(‘P(fTr@j—l))Sﬁ(fw@j))),
TEPn j=1
holds. In the last expression, the sum runs over thégetf pairings, i.e., permutations of {1,...,2n}
such thatr(2j — 1) < m(2j) andn(2j — 1) < (2§ + 1). Moreover,e(r) denotes the signature of the

permutationr.

The stateur also has an information theoretic characterization: itthagimal entropy among all the gauge-
invariant states’ such thatv(a*(f)a(g)) = (g,Tf) in the following sense. For a finite dimensional subspace
R C b define the entropy

S(v|R) = —tr(plog p)

wherep is the density matrix of the restriction ofto the finite dimensional algeb@AR(RK). Then

S(wr|R) = max S(v|R),

€Er

where E denotes the set of gauge-invariant statesuch thatv(a*(f)a(g)) = (g,7f). This follows from a
simple adaptation of the proof of Proposition 1ain [LR].
We refer the reader to [A] and [BR2] for more information oraqisfree states o6 AR(b).

3 Araki-Wyssrepresentation

Let wr be the gauge-invariant quasi-free state(@hR(h) generated by". The associated GNS representation,
which we denote by{Hr, 71, Qr), was first constructed by Araki and Wyss in [AW)]. It can be dim as
follows:

1. Hy =Ta(hy © b)) C Tu(h @ ) whereh; = (Ran(I — T))! andhy = (RanT)*.
2. Qr = Qp, the Fock vacuum vector.
3. Thex-morphismry is given by

mr(a(f)) :a(\/Ifo@()) +a* <O@\F7f),

where™ denotes an arbitrary complex conjugationfton



Using theexponentialaw for fermionsU : T, (b1 @ h2) — Ta(h1) @ T (h2) an equivalent representation with
cyclic vectorUr = Qr ® O is obtained. It is explicitly given by

Unr(a(f))U* = a (\/I - Tf) ®I+0®a" (fo) ,

where® = I'(~1I) = (—=1)". In the limiting case§” = 0 andT = I which correspond to theacuumstatevac
and to thdilled Fermiseafull the Araki-Wyss representation degenerates to the FockrairBiack representations
7 andmap.

The reader should consult [A] and [D] for a detailed intradtae to quasi-free representations@AR(h).

4 Enveloping von Neumann algebra

The following theorem summarizes some interesting featofethe envelopingvon Neumannalgebradi =
mr(CAR(H))” of a gauge-invariant quasi-free statg.

Theorem 2 1. wr is primary, i.e., its enveloping von Neumann algebra factor. 9ir is of type

1 if either b is finite dimensional of is infinite dimensional and’ = 0 or T' = I.
IT if pis infinite dimensional and” = I/2.

IIT, if b is infinite dimensional an@” = (I + A\*')~! for some\ €]0, 1].

111, if the continuous spectrum @fis not empty.

2. wr ismodular, i.e., the cyclic vectddr is separating fofir , if and only ifKerT = Ker(I — T) = {0}.

3. wr andwg are quasi-equivalent if and only if the operatdfd/? — /2 and (I — T)Y/? — (I — S)'/2 are
Hilbert-Schmidt.

If Ker T = Ker(I — T') = {0} thenmodulartheory applies t&r (see [Tomita-Takesaki theory]). Crir
there exist an anti-unitary involutioh (the modular conjugation) and a positive operakafthe modular operator)
such that

JAY?2AQr = A*Qp,
for all A € M7. These operators are explicitly given by
J=(—1)NO=DEPG) A =T(e* @e™®),
wherej : f®© g— g® fands =logT(I —T) .
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