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Overview

• Classical framework
• Entropy production

• Entropic fluctuations: The Evans-Searles identity

• Entropic fluctuations: The generalized Evans-Searles identity

• Linear response: Finite time

• Nonequilibrium steady states (NESS)

• Linear response: The large time limit

• The Central Limit Theorem – Fluctuation-Dissipation

• Entropic fluctuations: The limiting Evans-Searles symmetry

• Entropic fluctuations: The Gallavotti-Cohen symmetry

• Lp-Liouvilleans
• The principle of regular entropic fluctuations

• Examples

ESI June 2010 – p. 2



0. Classical Framework

Measurable dynamical system with decent metric properties (M,F , φt, µ)
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0. Classical Framework

Measurable dynamical system with decent metric properties (M,F , φt, µ)

• Phase space (M,F): complete separable metric space with Borel σ-field.

• Dynamics (φt)t∈R: continuous group of homeomorphisms of M .

• State µ: µ ∈ P , the space of Borel probability measures on (M,F).

• Observables f : f ∈ B, the space of bounded measurable real functions on M .

• Time-reversal: ϑ continuous involution of M s.t. φt ◦ ϑ = ϑ ◦ φ−t.

Notation: For ν ∈ P , f ∈ B and t ∈ R

ν(f) =

∫

M

fdν

f t = f ◦ φt, νt(f) = ν(f t)
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0. Classical Framework

Measurable dynamical system with decent metric properties (M,F , φt, µ)

• Phase space (M,F): complete separable metric space with Borel σ-field.

• Dynamics (φt)t∈R: continuous group of homeomorphisms of M .

• State µ: µ ∈ P , the space of Borel probability measures on (M,F).

• Observables f : f ∈ B, the space of bounded measurable real functions on M .

• Time-reversal: ϑ continuous involution of M s.t. φt ◦ ϑ = ϑ ◦ φ−t.

Notation:
PI = {ν ∈ P | ∀t ∈ R, νt = ν} (steady states)

Pµ = {ν ∈ P | ν ≪ µ} (µ-normal states)

For ν ∈ Pµ : ∆ν|µ =
dν

dµ
, ℓν|µ = log∆ν|µ
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0. Classical Framework

Measurable dynamical system with decent metric properties (M,F , φt, µ)

• Phase space (M,F): complete separable metric space with Borel σ-field.

• Dynamics (φt)t∈R: continuous group of homeomorphisms of M .

• State µ: µ ∈ P , the space of Borel probability measures on (M,F).

• Observables f : f ∈ B, the space of bounded measurable real functions on M .

• Time-reversal: ϑ continuous involution of M s.t. φt ◦ ϑ = ϑ ◦ φ−t.

Relative entropy: For ω, ν ∈ P

0 ≥ Ent(ω|ν) = − sup
f∈B

(

ω(f)− log ν(ef )
)

=

{

−∞ if ω 6∈ Pν

−ω(ℓω|ν) if ω ∈ Pν
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0. Classical Framework

Measurable dynamical system with decent metric properties (M,F , φt, µ)

• Phase space (M,F): complete separable metric space with Borel σ-field.

• Dynamics (φt)t∈R: continuous group of homeomorphisms of M .

• State µ: µ ∈ P , the space of Borel probability measures on (M,F).

• Observables f : f ∈ B, the space of bounded measurable real functions on M .

• Time-reversal: ϑ continuous involution of M s.t. φt ◦ ϑ = ϑ ◦ φ−t.

Rényi entropy: For ω, ν ∈ P

Entα(ω|ν) =
{

−∞ if ω 6∈ Pν

logω(∆α
ω|ν

) if ω ∈ Pν
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0. Classical Framework

Measurable dynamical system with decent metric properties (M,F , φt, µ)

• Phase space (M,F): complete separable metric space with Borel σ-field.

• Dynamics (φt)t∈R: continuous group of homeomorphisms of M .

• State µ: µ ∈ P , the space of Borel probability measures on (M,F).

• Observables f : f ∈ B, the space of bounded measurable real functions on M .

• Time-reversal: ϑ continuous involution of M s.t. φt ◦ ϑ = ϑ ◦ φ−t.

Basic assumptions:

(REG) ∀t ∈ R, µt ∈ Pµ and σ =
d

dt
ℓµt|µ

∣

∣

∣

∣

t=0

is continuous on M

(TRI) ∀f ∈ B, µ(f ◦ ϑ) = µ(f)
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1. Entropy production

Proposition. (The cocycle property) For all s, t ∈ R one has

ℓµt+s|µ = ℓµt|µ + ℓµs|µ ◦ φ−t
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1. Entropy production

Proposition. (The cocycle property) For all s, t ∈ R one has

ℓµt+s|µ = ℓµt|µ + ℓµs|µ ◦ φ−t

Corollary. Under ou basic assumption (REG)

ℓµt|µ =

∫ t

0
σ−s ds

and hence one has the entropy balance equation

Ent(µt|µ)− Ent(µ|µ) = −µt(ℓµt|µ) = −
∫ t

0
µ(σs) ds
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1. Entropy production

Proposition. (The cocycle property) For all s, t ∈ R one has

ℓµt+s|µ = ℓµt|µ + ℓµs|µ ◦ φ−t

Corollary. Under ou basic assumption (REG)

ℓµt|µ =

∫ t

0
σ−s ds

and hence one has the entropy balance equation

Ent(µt|µ)− Ent(µ|µ) = −µt(ℓµt|µ) = −
∫ t

0
µ(σs) ds

↓

Mean entropy production rate over the period [0, t]

−1

t
Ent(µt|µ) = 1

t

∫ t

0
µ(σs) ds ≥ 0
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2. Entropic fluctuations: The Evans-Searles identity

St =
1

t

∫ t

0
σs ds =

1

t
ℓµt|µ ◦ φt (mean entropy production rate observable)
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2. Entropic fluctuations: The Evans-Searles identity

St =
1

t

∫ t

0
σs ds =

1

t
ℓµt|µ ◦ φt (mean entropy production rate observable)

P t(f) = µ(f(St)) P
t
(f) = µ(f(−St)) (distributions of St and −St)

Theorem. (Evans-Searles [1994] or transient fluctuation theorem) Under assumptions
(REG) and (TRI) negative values of St become exponentially rare as t → ∞ (dynamical
form of 2nd law !). More precisely one has

dP
t

dP t
(s) = e−ts
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t
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1

t
ℓµt|µ ◦ φt (mean entropy production rate observable)

P t(f) = µ(f(St)) P
t
(f) = µ(f(−St)) (distributions of St and −St)

Theorem. (Evans-Searles [1994] or transient fluctuation theorem) Under assumptions
(REG) and (TRI) negative values of St become exponentially rare as t → ∞ (dynamical
form of 2nd law !). More precisely one has

dP
t

dP t
(s) = e−ts

Proof. (TRI) ⇒ µt(f ◦ ϑ) = µ−t(f) ⇒ σ ◦ ϑ = −σ ⇒ ℓµt|µ ◦ ϑ = −St

P
t
(f) = µ

(

f

(

−1

t
ℓµt|µ ◦ φt

))

= µt

(

f

(

−1

t
ℓµt|µ

))

= µ

(

f

(

−1

t
ℓµt|µ

)

e
ℓ
µt|µ

)

= µ

(

f

(

−1

t
ℓµt|µ ◦ ϑ

)

e
ℓ
µt|µ◦ϑ

)

= µ
(

f (St) e
−tSt

)

= P t(fe−ts)
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2. Entropic fluctuations: The Evans-Searles identity

St =
1

t

∫ t

0
σs ds =

1

t
ℓµt|µ ◦ φt (mean entropy production rate observable)

P t(f) = µ(f(St)) P
t
(f) = µ(f(−St)) (distributions of St and −St)

Theorem. (Evans-Searles [1994] or transient fluctuation theorem) Under assumptions
(REG) and (TRI) negative values of St become exponentially rare as t → ∞ (dynamical
form of 2nd law !). More precisely one has

dP
t

dP t
(s) = e−ts

Define the ES function

et(α) = Entα(µ
t|µ) = µ

(

e−α
∫
t
0
σs ds

)

= µ
(

e−αtSt

)
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2. Entropic fluctuations: The Evans-Searles identity

St =
1

t

∫ t

0
σs ds =

1

t
ℓµt|µ ◦ φt (mean entropy production rate observable)

P t(f) = µ(f(St)) P
t
(f) = µ(f(−St)) (distributions of St and −St)

Theorem. (Evans-Searles [1994] or transient fluctuation theorem) Under assumptions
(REG) and (TRI) negative values of St become exponentially rare as t → ∞ (dynamical
form of 2nd law !). More precisely one has

dP
t

dP t
(s) = e−ts

Define the ES function

et(α) = Entα(µ
t|µ) = µ

(

e−α
∫
t
0
σs ds

)

= µ
(

e−αtSt

)

Alternative formulation of the ES theorem: the ES symmetry

et(1− α) = et(α)
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3. Entropic fluctuations: The generalized ES identity

Assume we have some contol of our dynamical system

R
n ∋ X 7→ (M,F , φt

X , µX)
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3. Entropic fluctuations: The generalized ES identity

Assume we have some contol of our dynamical system

R
n ∋ X 7→ (M,F , φt

X , µX)

• µ0 is φt
0-invariant, i.e., X = 0 represent some equilibrium situation.

• X 7→ σX is C1 near X = 0, then

σX = X · ΦX =

n
∑

j=1

XjΦ
(j)
X

and ΦX = (Φ
(1)
X

, . . . ,Φ
(n)
X

) is the vector of current observables, the current Φ(j)
X

being associated to the force Xj .
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3. Entropic fluctuations: The generalized ES identity

Assume we have some contol of our dynamical system

R
n ∋ X 7→ (M,F , φt

X , µX)

• µ0 is φt
0-invariant, i.e., X = 0 represent some equilibrium situation.

• X 7→ σX is C1 near X = 0, then

σX = X · ΦX =

n
∑

j=1

XjΦ
(j)
X

and ΦX = (Φ
(1)
X

, . . . ,Φ
(n)
X

) is the vector of current observables, the current Φ(j)
X

being associated to the force Xj .

• ϑ is idependant of X, then

ΦX ◦ ϑ = −ΦX µ0(Φ0) = 0
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3. Entropic fluctuations: The generalized ES identity

P t
X(f) = µ

(

f

(

1

t

∫ t

0
Φs

X ds

))

P
t
X(f) = µ

(

f

(

−1

t

∫ t

0
Φs

X ds

))
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3. Entropic fluctuations: The generalized ES identity

P t
X(f) = µ

(

f

(

1

t

∫ t

0
Φs

X ds

))

P
t
X(f) = µ

(

f

(

−1

t

∫ t

0
Φs

X ds

))

Theorem. (Generalized ES fluctuation theorem) Under our assumptions, as t → ∞ the
currents flow mostly in definite directions

dP
t
X

dP t
X

(Φ(1), . . . ,Φ(n)) = exp



−t

n
∑

j=1

XjΦ
(j)





ESI June 2010 – p. 7



3. Entropic fluctuations: The generalized ES identity

P t
X(f) = µ

(

f

(

1

t

∫ t

0
Φs

X ds

))

P
t
X(f) = µ

(

f

(

−1

t

∫ t

0
Φs

X ds

))

Theorem. (Generalized ES fluctuation theorem) Under our assumptions, as t → ∞ the
currents flow mostly in definite directions

dP
t
X

dP t
X

(Φ(1), . . . ,Φ(n)) = exp



−t

n
∑

j=1

XjΦ
(j)





Equivalently the generalized ES function

gt(X,Y ) = µX

(

e−Y ·
∫
t
0
Φs

X ds
)
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3. Entropic fluctuations: The generalized ES identity

P t
X(f) = µ

(

f

(

1

t

∫ t

0
Φs

X ds

))

P
t
X(f) = µ

(

f

(

−1

t

∫ t

0
Φs

X ds

))

Theorem. (Generalized ES fluctuation theorem) Under our assumptions, as t → ∞ the
currents flow mostly in definite directions

dP
t
X

dP t
X

(Φ(1), . . . ,Φ(n)) = exp



−t

n
∑

j=1

XjΦ
(j)





Equivalently the generalized ES function

gt(X,Y ) = µX

(

e−Y ·
∫
t
0
Φs

X ds
)

satisfies the generalized ES symmetry

gt(X,X − Y ) = gt(X,Y )
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4. Linear response: Finite time

If

X 7→ 〈ΦX〉t = 1

t

∫ t

0
µX(Φs

X) ds

is differentiable at X = 0
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4. Linear response: Finite time

If

X 7→ 〈ΦX〉t = 1

t

∫ t

0
µX(Φs

X) ds

is differentiable at X = 0 we set

Lt
jk = ∂Xk

〈Φ(j)
X

〉t
∣

∣

∣

X=0
(finite time transport matrix)
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4. Linear response: Finite time

If

X 7→ 〈ΦX〉t = 1

t

∫ t

0
µX(Φs

X) ds

is differentiable at X = 0 we set

Lt
jk = ∂Xk

〈Φ(j)
X

〉t
∣

∣

∣

X=0
(finite time transport matrix)

Theorem. (Finite time Green-Kubo formula and Onsager reciprocity relations) Assume
that (X,Y ) 7→ gt(X,Y ) is C2 near (0, 0). Then

Lt
jk =

1

2

∫ t

−t

µ0

(

Φ
(k)
0 Φ

(j)s
0

)

(

1− |s|
t

)

ds

and in particular the finite time transport matrix is symmetric (Onsager Reciprocity).
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4. Linear response: Finite time

Remark. The following shows that the transport matrix is non-negative.

0 ≤ 〈σX〉t =
n
∑

j=1

Xj〈Φ(j)
X

〉t =
n
∑

j,k=1

Lt
jkXjXk + o(|X|2)
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4. Linear response: Finite time

Remark. The following shows that the transport matrix is non-negative.

0 ≤ 〈σX〉t =
n
∑

j=1

Xj〈Φ(j)
X

〉t =
n
∑

j,k=1

Lt
jkXjXk + o(|X|2)

Proof of the theorem. One has

Lt
jk = ∂Xk

〈Φ(j)
X

〉t
∣

∣

∣

X=0
= −1

t
∂Xk

∂Yj
gt(X,Y )

∣

∣

∣

X=Y =0

ESI June 2010 – p. 9
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Remark. The following shows that the transport matrix is non-negative.

0 ≤ 〈σX〉t =
n
∑

j=1

Xj〈Φ(j)
X

〉t =
n
∑

j,k=1

Lt
jkXjXk + o(|X|2)

Proof of the theorem. One has

Lt
jk = ∂Xk

〈Φ(j)
X

〉t
∣

∣

∣

X=0
= −1

t
∂Xk

∂Yj
gt(X,Y )

∣

∣

∣

X=Y =0

As a consequence of the generalized ES symmetry one also has

−∂Xk
∂Yj

gt(X,Y )
∣

∣

∣

X=Y =0
=

1

2
∂Yk

∂Yj
gt(X,Y )

∣

∣

∣

X=Y =0

(note that the symmetry of Lt already follows from this formula!)
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∣

∣
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= −1

t
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∂Yj
gt(X,Y )

∣

∣

∣

X=Y =0

As a consequence of the generalized ES symmetry one also has

−∂Xk
∂Yj

gt(X,Y )
∣

∣

∣

X=Y =0
=

1

2
∂Yk

∂Yj
gt(X,Y )

∣

∣

∣

X=Y =0

(note that the symmetry of Lt already follows from this formula!) Thus we can write

Lt
jk =

1

2t

∫ t

0

∫ t

0
µ0

(

Φ
(k)s1
0 Φ

(j)s2
0

)

ds1ds2 =
1

2t

∫ t

0

∫ t

0
µ0

(

Φ
(k)
0 Φ

(j)s2−s1
0

)

ds1ds2

ESI June 2010 – p. 9



4. Linear response: Finite time

Remark. The following shows that the transport matrix is non-negative.

0 ≤ 〈σX〉t =
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∣
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∣

X=Y =0

(note that the symmetry of Lt already follows from this formula!) Thus we can write

Lt
jk =

1

2t

∫ t

0

∫ t

0
µ0

(

Φ
(k)s1
0 Φ

(j)s2
0

)

ds1ds2 =
1

2t

∫ t

0

∫ t

0
µ0

(

Φ
(k)
0 Φ

(j)s2−s1
0

)

ds1ds2

and the result follows by a simple change of integration variables.
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5. Nonequilibrium Steady States

Definition. µ+ ∈ P is the NESS of (M,F , φt, µ) if

lim
t→∞

1

t

∫ t

0
µs(f) ds = µ+(f)

for all bounded continuous f .
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1

t

∫ t

0
µs(f) ds = µ+(f)

for all bounded continuous f . µ+ is entropically non-trivial if µ+(σ) > 0.

QuasiTheorem. The NESS µ+ of (M,F , φt, µ) is entropically non-trivial if and only if
µ+ 6∈ Pµ, i.e., µ+ is singular w.r.t. µ.
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5. Nonequilibrium Steady States

Definition. µ+ ∈ P is the NESS of (M,F , φt, µ) if

lim
t→∞

1

t

∫ t

0
µs(f) ds = µ+(f)

for all bounded continuous f . µ+ is entropically non-trivial if µ+(σ) > 0.

QuasiTheorem. The NESS µ+ of (M,F , φt, µ) is entropically non-trivial if and only if
µ+ 6∈ Pµ, i.e., µ+ is singular w.r.t. µ.

Entropic non-triviality is the signature of non-equilibrium

Theorem.(i) If ν ∈ PI ∩ Pµ then ν(σ) = 0.
(ii). If µ+(σ)− µt(σ) = O(t−1) then µ+(σ) = 0 implies µ+ ∈ PI ∩ Pµ.
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6. Linear response: The large time limit

Assume that for small X ∈ R
n the controlled system (M,F , φt

X , µX) has a NESS µX
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6. Linear response: The large time limit

Assume that for small X ∈ R
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one gets the Green-Kubo formula and the Onsager reciprocity relations

Ljk =
1

2

∫ ∞

−∞
µ0

(

Φ
(k)
0 Φ

(j)s
0

)

ds, Ljk = Lkj

These are delicate dynamical problems that can only be checked in specific models.
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7. The Central Limit Theorem – Fluctuation-Dissipation

The Central Limit Theorem holds for the currents if there is a positive definite matrix D

s.t., for all bounded continuous function f : Rn → R,

lim
t→∞

µ0

(

f

(

1√
t

∫ t

0
Φs

0 ds

))

=
1

√

(2π)n detD

∫

Rn
f(Φ)e−

1
2
Φ·D−1Φ dΦ
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s.t., for all bounded continuous function f : Rn → R,

lim
t→∞

µ0

(

f

(
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∫ t

0
Φs

0 ds

))

=
1

√

(2π)n detD

∫

Rn
f(Φ)e−

1
2
Φ·D−1Φ dΦ

Einstein’s relation
Djk = 2Ljk

together with the Green-Kubo formula

Ljk =
1

2

∫ ∞

−∞
µ0

(

Φ
(k)
0 Φ

(j)s
0

)

ds

and the Onsager reciprocity relations Ljk = Lkj complete the Fluctuation-Dissipation
theorem for the system (M,F , φt

X , µX) near equilibrium (X = 0).
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8. Entropic fluctuations: The limiting ES symmetry

Recall the ES function

et(α) = µ
(

e−α
∫
t
0
σs ds

)
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∫
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e(α) = lim
t→∞

1

t
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therefore e(0) = e(1) = 0.
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µ

({

x ∈ M

∣

∣

∣

∣

∣

∣

∣

∣

1

t

∫ t

0
σt(x) dt− µ+(σ)

∣

∣

∣

∣

≥ ǫ

})

≤ e−ta(ǫ)
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• Large deviation principle with rate function I(s) = supα∈R
(αs− e(α))

lim
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∣

∣

∣
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8. Entropic fluctuations: The limiting ES symmetry

Similar conclusions hold for individual currents Φ
(j)
X

if one assumes that the limiting
generalized ES function

g(X,Y ) = lim
t→∞

1

t
log gt(X,Y ) = lim

t→∞

1

t
log µX

(

e−Y ·
∫
t
0
Φs

X ds
)

exists and is a C1 function of Y ∈ R
n.
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9. The Gallavotti-Cohen symmetry

Let µ+ be a NESS of (M,F , φt, µ) and assume that the Gallavotti-Cohen function

e+(α) = lim
t→∞

1

t
log µ+

(

e−α
∫
t
0
σs ds

)

exists and is C1.
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Let µ+ be a NESS of (M,F , φt, µ) and assume that the Gallavotti-Cohen function

e+(α) = lim
t→∞

1

t
log µ+

(

e−α
∫
t
0
σs ds

)

exists and is C1.

Remark. In general, unlke the ES function et(α), the finite time GC function

e+t(α) = µ+
(

e−α
∫
t
0
σs ds

)

does not satisfy "the symmetry", i.e. e+t(1− α) 6= e+t(α).
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exists and is C1.

Definition. The GC symmetry holds if, for all α ∈ R, e+(1− α) = e+(α).

• 1993: Cohen, Evans and Morriss discover the GC symmetry in numerical
experiments on shear flows.

• 1995: Cohen and Gallavotti show that the GC symmetry holds for Anosov systems.

• 1998: Kurchan shows that it also holds for stochastic dynamical systems.

• 1999: Lebowitz and Spohn make a detailed analysis of the GC symmetry for
Markov processes.

• 1999: Maes relates the GC symmetry to the Gibbs property of µ+.
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9. The Gallavotti-Cohen symmetry

Consequences of the GC symmetry:
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0
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• The generalized GC-symmetry g+(X,X − Y ) = g+(X,Y ) yields the
fluctuation-dissipation theorem if g+(X,Y ) is C1,2.
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10. Lp-Liouvillians

e−itLpf = e
− 1

p

∫
t
0
σs ds

f t

defines a group of isometries on Lp(M,µ).
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e−itLpf = e
− 1

p

∫
t
0
σs ds

f t

defines a group of isometries on Lp(M,µ). The generator

Lp = L∞ − i

p
σ = L1 + i

1− p

p
σ

is the Lp-Liouvillian of the system.
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10. Lp-Liouvillians

e−itLpf = e
− 1

p

∫
t
0
σs ds

f t

defines a group of isometries on Lp(M,µ). The generator

Lp = L∞ − i

p
σ = L1 + i

1− p

p
σ

is the Lp-Liouvillian of the system.

The identity

et(α) = 〈1|e−itLp1〉 = 〈eitLq1|1〉, α =
1

p
,

1

p
+

1

q
= 1

yields a characterization of e(α) in terms of spectral resonances of Lp.
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10. The principle of regular entropic fluctuations

Remark. Since, for entropically non-trivial systems, µ and µ+ are mutually singular, the
ES-symmetry and the GC-symmetry are two very different statements. The ES
symmetry is a mathematical triviality (even though it has deep consequences) while the
GC-symmetry is a true mathematical finesse containing a lot of interesting information
about the NESS µ+.
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Remark. Since, for entropically non-trivial systems, µ and µ+ are mutually singular, the
ES-symmetry and the GC-symmetry are two very different statements. The ES
symmetry is a mathematical triviality (even though it has deep consequences) while the
GC-symmetry is a true mathematical finesse containing a lot of interesting information
about the NESS µ+.

Cohen-Gallavotti: Note on two theorems in nonequilibrium statistical mechanics. J. Stat. Phys. 96,
1343–1349 (1999)

ESI June 2010 – p. 19



10. The principle of regular entropic fluctuations

Remark. Since, for entropically non-trivial systems, µ and µ+ are mutually singular, the
ES-symmetry and the GC-symmetry are two very different statements. The ES
symmetry is a mathematical triviality (even though it has deep consequences) while the
GC-symmetry is a true mathematical finesse containing a lot of interesting information
about the NESS µ+.
Consequently one expects the two functions e(α) and e+(α) as well as the two
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10. The principle of regular entropic fluctuations

Remark. Since, for entropically non-trivial systems, µ and µ+ are mutually singular, the
ES-symmetry and the GC-symmetry are two very different statements. The ES
symmetry is a mathematical triviality (even though it has deep consequences) while the
GC-symmetry is a true mathematical finesse containing a lot of interesting information
about the NESS µ+.
Consequently one expects the two functions e(α) and e+(α) as well as the two
generalized functions g(X,Y ) and g+(X,Y ) to be quite different.

Our main contribution to the subject (as far as classical systems are concerned) is the
following

Principle of regular entropic fluctuations. In all systems known to exhibit the GC-
symmetry, respectively the generalized GC-symmetry, one has

e+(α) = e(α), respectively g+(X,Y ) = g(X,Y ),

which is equivalent to

lim
t→∞

lim
s→∞

1

t
log µs

(

e−α
∫
t
0
στ dτ

)

= lim
s→∞

lim
t→∞

1

t
log µs

(

e−α
∫
t
0
στ dτ

)
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11. Examples

• A shift. The left shift on the sequences x = (xi)i∈Z ∈ R
Z with the measure

dµ(x) =





∏

i≤0

F (−xi)dxi





(

∏

i>0

F (xi)dxi

)

Time revesal is ϑ(x)i = −x−i and dµ+(x) =
∏

i∈Z
F (xi)dxi. A simple

calculation yields

e(α) = e+(α) = log

∫

F (x)αF (−x)(1−α)dx

and one immediately checks that e(1− α) = e(α).

ESI June 2010 – p. 20



11. Examples

• A shift. The left shift on the sequences x = (xi)i∈Z ∈ R
Z with the measure

dµ(x) =





∏

i≤0

F (−xi)dxi





(

∏

i>0

F (xi)dxi

)

Time revesal is ϑ(x)i = −x−i and dµ+(x) =
∏

i∈Z
F (xi)dxi. A simple

calculation yields

e(α) = e+(α) = log

∫

F (x)αF (−x)(1−α)dx

and one immediately checks that e(1− α) = e(α).

• Linear dynamics of Gaussian random fields

ESI June 2010 – p. 20



11. Examples

• A shift. The left shift on the sequences x = (xi)i∈Z ∈ R
Z with the measure

dµ(x) =





∏

i≤0

F (−xi)dxi





(

∏

i>0

F (xi)dxi

)

Time revesal is ϑ(x)i = −x−i and dµ+(x) =
∏

i∈Z
F (xi)dxi. A simple

calculation yields

e(α) = e+(α) = log

∫

F (x)αF (−x)(1−α)dx

and one immediately checks that e(1− α) = e(α).

• Linear dynamics of Gaussian random fields

• Infinite Harmonic chain

ESI June 2010 – p. 20



11. Examples

• A shift. The left shift on the sequences x = (xi)i∈Z ∈ R
Z with the measure

dµ(x) =





∏

i≤0

F (−xi)dxi





(

∏

i>0

F (xi)dxi

)

Time revesal is ϑ(x)i = −x−i and dµ+(x) =
∏

i∈Z
F (xi)dxi. A simple

calculation yields

e(α) = e+(α) = log

∫

F (x)αF (−x)(1−α)dx

and one immediately checks that e(1− α) = e(α).

• Linear dynamics of Gaussian random fields

• Infinite Harmonic chain
• Markov chains

ESI June 2010 – p. 20



11. Examples

• A shift. The left shift on the sequences x = (xi)i∈Z ∈ R
Z with the measure

dµ(x) =





∏

i≤0

F (−xi)dxi





(

∏

i>0

F (xi)dxi

)

Time revesal is ϑ(x)i = −x−i and dµ+(x) =
∏

i∈Z
F (xi)dxi. A simple

calculation yields
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∫

F (x)αF (−x)(1−α)dx

and one immediately checks that e(1− α) = e(α).

• Linear dynamics of Gaussian random fields

• Infinite Harmonic chain
• Markov chains
• Anosov diffeomorphisms
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calculation yields

e(α) = e+(α) = log

∫

F (x)αF (−x)(1−α)dx

and one immediately checks that e(1− α) = e(α).

• Linear dynamics of Gaussian random fields

• Infinite Harmonic chain
• Markov chains
• Anosov diffeomorphisms

• Chaotic Homeomorphisms of compact metric spaces (for suitable definition of
entropy production)
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