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Entropy, as defined by Clausius, is the true cornerstone of equilibrium thermodynamics. Its statistical interpre-
tation by Boltzmann is the key to our microscopic understanding of equilibrium. Since then many other concepts
of entropy have appeared in physics and mathematics but noneof them has significantly contributed to our un-
derstanding of nonequilibrium. A notion of entropy production (rate) has emerged from recent developments in
classical and quantum statistical mechanics of nonequilibrium steady states. Taking this notion seriously, it does
not seems possible to define the entropy of a nonequilibrium steady states [R3]. As argued in [G], if such an en-
tropy exists then it is most likely to take the value−∞ because a system in such a state loses entropy at a constant
rate.

The purpose of this article is to introduce the notion of entropy production for nonequilibrium steady states of
a small quantum system in contact with thermal reservoirs. We shall make free use of the concepts and notation of
[NESS in quantum statistical mechanics].

1 Relative entropy

If ρ, ρ′ are density matrices their relative entropy is defined, in analogy with the relative entropy of two probability
measures, by

Ent(ρ′|ρ) = tr(ρ′(log ρ− log ρ′)).

It has been generalized by Araki to arbitrary states on a von Neumann algebra [A1, A2]. To describe the general
definition we need to introduce the notion of relative modular operator.

Let M be a von Neumann algebra acting on the Hilbert spaceH andΨ,Φ ∈ H two unit vectors. Denote by
sΨ the support of the stateψ(A) = (Ψ|AΨ), i.e., the orthogonal projection on the closure ofM

′Ψ (see [Tomita-
Takesaki theory]). SinceA,B ∈ M andAΨ = BΨ impliesAsΨ = BsΨ, formula

AΨ ⊕ Ω 7→ sΨA
∗Φ,

defines a closable antilinear operator on the dense subspaceMΨ⊕ (MΨ)⊥ ⊂ H. Denote bySΦ|Ψ its closure. The
self-adjoint operator∆Φ|Ψ = S∗

Φ|ΨSΦ|Ψ is called relative modular operator of the pairΦ,Ψ.

Definition 1 Letω be amodularstate on theC∗-algebraO. Denote by(H, π,Ψω) the inducedGNSrepresenta-
tion and byH+ its natural cone. For anyω-normal stateν onO let Φν be its unique vector representative inH+

(Theorem 13 in [Tomita-Takesaki theory]). The entropy of a stateν relative toω is defined by

Ent(ν|ω) =

{

(Ψν | log ∆Ψω|Ψν
Ψν), if ν is ω-normal,

−∞ otherwise.

Remark. 1. We have restricted the above definition to modularω for simplicity. To obtain a completely general
definition it suffices to pass to astandardrepresentation of theenvelopingvon NeumannalgebraOω if sν ≤ sω

and to setEnt(ν|ω) = −∞ otherwise.
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2. We use the notationEnt( · | · ) of [BR2], [OP] which differs by sign and ordering of the arguments from the
original notation in [A1, A2].

The most important properties of relative entropy for our purposes are

1. Ent(ν|ω) ≤ 0 with equality if and only ifν = ω.

2. For anyC ∈ R the set of states{ν |Ent(ν|ω) ≥ C} is a weak-∗ compact subset of thefolium Nω.

3. Ent(ν ◦ τ |ω ◦ τ) = Ent(ν|ω) for any∗-automorphismτ .

The reader should consult [OP] for a more exhaustive list anddetailed discussions.

2 The entropy balance equation

The change in relative entropy due to the action of an inner∗-automorphism is given by the following result (see
[JP1]).

Theorem 2 Letω be a modular state on theC∗-algebraO. Denote byδω the infinitesimal generator of itsmodular
group. For any unitaryU ∈ O setτU (A) = U∗AU . Then the following holds

Ent(ν ◦ τU |ω) = Ent(ν|ω) − i ν (U∗δω(U)) ,

for any stateν onO and any unitaryU ∈ Dom(δω).

Using Property 3 of the relative entropy, a direct application of this theorem tolocal perturbations of quantum
dynamical systems (see section 5 in [Quantum dynamical systems]) yields

Corollary 3 Let (O, τ) be aC∗- or W ∗-dynamical system equipped with a modular invariant stateω. Denote by
δω the generator of the modular group ofω. For any local perturbationτV induced byV = V ∗ ∈ Dom(δω) one
has

Ent(ν ◦ τ t
V |ω) = Ent(ν|ω) −

∫ t

0

ν ◦ τ s
V (δω(V )) ds. (1)

Remark. In the case of a time dependent local perturbationV (t) such thatt 7→ V (t) and t 7→ δω(V (t)) are
continuous in the natural topology ofO, Theorem 2 yields

Ent(ν ◦ τ s→t
V |ω) = Ent(ν|ω) −

∫ t

s

ν ◦ τ s→u
V (δω(V (u))) ds.

To our knowledge, this formula was first obtained in [OHI] fora(τ, β)-KMS stateω. In this special caseδω = −βδ
whereδ is the infinitesimal generator ofτ .

Assume thatω+ ∈ Σ+(τV , ω), i.e., thatω+ is a NESS of the perturbed dynamics (see [NESS in quantum
statistical mechanics]). Then there exists a nettα → ∞ such that

ω+(A) = lim
α

1

tα

∫ tα

0

ω ◦ τ s
V (A) ds.

The entropy balance formula (1) and property 1 yield

0 ≤ − lim
α

Ent(ω ◦ τ tα

V |ω)

tα
= ω+(δω(V )),

from which, given the following definition, the next proposition follows.
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Definition 4 1. We define the entropy production observable of the local perturbationV relative to the reference
stateω byσ(ω, V ) = δω(V ).
2. The entropy production rate of a NESSω+ ∈ Σ+(τV , ω) is Ep(ω+) = ω+(σ(ω, V )).

Proposition 5 The entropy production rate of a NESS is non-negative.

For quantum spin systems our definition formally agrees withRuelle’s proposal [R1], [R2]. It is also closely
related to the definition of entropy production used in [LS].

3 Thermodynamic interpretation

Let us consider the case of a small systemS, with a finite dimensional algebraO0, coupled to several infinitely
extended reservoirsR1, . . . ,RM . We will use freely the notation of [NESS in quantum statistical mechanics].

Denote byδa the generator ofτ t
a = τ t|Oa

for 0 ≤ a ≤M . SinceO0 is finite dimensional one hasδ0 = i[HS , · ]
for some HamiltonianHS . Observables describing the energy fluxes out of the reservoirs can be obtained in the
following way. The total energy of the system is the sum of theenergy of each reservoir, of the energyHS of the
small system and of the interaction energyV . Since the total energy is conserved, the rate at which the energy of
the reservoirs decreases under the coupled dynamics is

d

dt
τ t
V (HS + V ) = τ t

V





∑

1≤j≤M

δj(HS + V ) + i[HS + V,HS + V ]



 = τ t
V





∑

1≤j≤M

δj(V )



 .

Noting thatδj(V ) = δj(Vj) ∈ O0 ⊗Oj , we can identifyΦj = δj(V ) with the energy flux out of reservoirRj .
Suppose now that each reservoirRj is initially at thermal equilibrium at inverse temperatureβj , the system

S being in an arbitraryτ0-invariant faithful state. From the observation in the paragraph following Theorem 2 in
[NESS in quantum statistical mechanics], we conclude that the generator of the modular group of the initial state
ω takes the form

δω = −
∑

1≤j≤M

βjδj + i[K, · ],

for someK ∈ O0 such thatδa(K) = 0 for 0 ≤ a ≤M . It follows that the entropy production observable is

σ(ω, V ) = −
∑

1≤j≤M

βjδj(V ) + i[K,V ] = −
∑

1≤j≤M

βjΦj − δV (K),

whereδV =
∑

a δa + i[V, · ] is the generator ofτV . It is important to realize that the second term in the right hand
side of this identity is a total derivative. Consequently, its contribution to entropy production remains uniformly
bounded in time

∫ t

0

τs
V (σ(ω, V )) ds = −

∑

1≤j≤M

βj

∫ t

0

τs
V (Φj) ds+

(

τ t
V (K) −K

)

.

In particular, sinceω+ ∈ Σ+(τV , ω) is τV -invariant, this boundary term does not contribute to the entropy produc-
tion rate of the NESS, and we can write

Ep(ω+) = −
∑

1≤j≤M

βj ω+(Φj),

which is the familiar phenomenological expression (Equ. (1) in [Nonequilibrium steady states]).
A similar interpretation is possible in the case of time dependent perturbations, see [OHI].
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For classical, thermostated systems used in the construction of microcanonical NESS, entropy production is
usually defined as the local rate of phase space contractionα (see [G], [NESS in classical statistical mechanics]).
If φt denotes the phase space flow andµ the reference measure (typically Lebesgue measure), then

µt(f) = µ(f ◦ φt) = µ(f e
R

t

0
α◦φ−s

ds).

A simple calculation shows that, ifν is absolutely continuous with respect toµ, then

Ent(νt|µ) = Ent(ν|µ) −

∫ t

0

ν(α ◦ φs) ds.

Comparison with Equ. (1) shows perfect agreement with Definition 4 (see [P] for a completely parallel treatment
of the classical and quantum cases).

4 Strict positivity of entropy production

We have seen thatEp(ω+) ≥ 0 for a NESSω+. One expects more, namelyEp(ω+) > 0. Strict positivity of
entropy production is a delicate dynamical problem. It is related to the singularity of the NESS with respect to the
reference state, as indicated by the following result ([JP3]).

Theorem 6 If ω+ ∈ Σ+(τV , ω) is ω-normal, thenEp(ω+) = 0. Moreover, if

sup
t>0

∣

∣

∣

∣

∫ t

0

{ω ◦ τ s
V (σ(ω, V )) − ω+(σ(ω, V ))} ds

∣

∣

∣

∣

<∞,

thenEp(ω+) = 0 implies thatω+ is ω-normal.

Strict positivity of entropy production has been proved in anumber of models. We refer to the original articles
[LS], [JP2], [FMU], [AS]. The strict positivity of entropy production for generic perturbations has been studied in
[JP4].
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