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The KMS condition plays a fundamental role in quantum gsiatis mechanics where it provides a general
abstract definition of equilibrium state. It is also deepgted in the mathematical structure of von Neumann
algebras (see [Tomita-Takesaki theory]). ConsequertBtetis an enormous literature on the subject and the
following article only provides a crude and very condensgrbduction. We refer the reader to Chapter 5.3, 5.4 in
[BR2] and Chapter 5 in [H] for a more elaborate introductitve also recommend reading the pioneering article
[HHW].

1 Motivation and definition

Consider a quantum system with finite dimensional Hilbegcgd{ (e.g. aN-level atom). Such a system is
described by &'*-dynamicalsystem(B(#), r) where

)

Tt(A> — eitHAe—itH

andH = H* denotes the Hamiltonian. For apyec R this system has a unique thermal equilibrium stajeat
inverse temperaturg given by the Gibbs-Boltzmann prescription

r(e PP A
wg(A) = tti(eﬁH))'

Note that the equilibrium correlation function
Fg(A, B;t) = ws(AT'(B)), 1)
is an entire function of. The cyclicity of the trace yields the identity
tr(e_ﬁHATt(B)) = tr(e_ﬁHAeitHBe_itH) = tr(e_i(t_iﬁ)HAeitHB).
Analytic continuation front € Rtot¢ € R + if3 further gives
tr(e PH A8 (B)) = tr(e 7 Al HDH BY = tr(e P71 (B) A),

from which we conclude that
Fs(A, B;t +iB) = ws(r'(B)A). (2)
Relations (1), (2) relate the values of the analytic functig (A, B; z) on the boundary of the strip
Sz ={z € C|0 < Im(zsignB) < |0},

to the statevs. They are called Kubo-Martin-Schwinger (KMS) boundary ditions. It is a simple exercise in
linear algebra to show that the Gibbs stateis the only state o8(#) satisfying the KMS boundary conditions
(1), (2) for all A, B € B(H). This fact motivates the following general definition.



Definition 1 Let (O, ) be aC*- or W*-dynamical system. A stateon O, supposed to be normal in tH&™*-
case, is(t, 3)-KMS for some3 € R if the following holds. For anyl, B € O there exists a functiofiz(A, B; z)
analytic in the stripSg, continuous on its closure and satisfying the Kubo-Ma8thwinger conditions (1), (2) on
its boundary.

Remarks. 1. KMS states for negative temperatures have no physicatimgaexcept for very special systems like
the above one. However, for historical reasons, they arelwigsed in the mathematical literature. For example
any modular state on a von Neumann algebra is a KMS stateeasmtemperaturg = —1 for its modular group
(see [Tomita-Takesaki theory]).

2. In the special casé = 0 the KMS conditions degeneratedd AB) = w(BA). In mathematics such states are
calledtracial. Physicists sometimes caltochastiadhese infinite temperature equilibrium states.

3. Ifwis (7%, 3)-KMS then it is alsa(77t, 3/~v)-KMS. Note however that there is no simple connection betwee
KMS states at different temperatures for the same dynanics

4. If wis aB-KMS state for theC*- or W*-dynamical systeniO, 7) then its normal extensiah to the enveloping
von Neumann algebr@,, is a3-KMS state for the inducetd *-dynamical systeniO,,, 7) defined in Section 3 of
[Quantum dynamical systems].

2 Characterizations

Let (O, 7) be aC*- or W*-dynamical system. An element € O is r-analytic if the functiont — 7%(A)
extends to an entire function ofe C. The setO, of r-analytic elements is a densesubalgebra o0 in the
appropriate topology (uniform in th&*-case g-weak in thel*-case). Ifw is a(r, §)-KMS state and4, B € O,
then the functionFz(A, B; z) of Definition 1 is given byFg(A, B;z) = w(A7r*(B)). In particular one has
w(ATP(B)) = w(BA). The following result shows that this property is chardstar of KMS states.

Theorem 2 Let(O, 1) be aC*- or W*-dynamical system. A stateon O, supposed to be normal in th&*-case,
is (1, B)-KMS for some3 € R if and only if the following holds. There exists a densénvariant x-subalgebra
M C O of r-analytic elements such tha{ A7"#(B)) = w(BA) for all A, B € M.

The main property of KMS states, namely the invariance utider evolution, is a simple corollary of Theorem
2.

Theorem 3 If wis a (7, 3)-KMS state then it is-invariant, i.e..w o 7* = w holds for allt € R.

Remarkably enough, Definition 1 which involves global pmbies of the dynamics can be rephrased in terms
of its infinitesimal generator. To formulate this resultustset

0 =0,y >0,

z(logz —logy) x,y >0,
s(z,y) =
400 x>0,y =0.

Theorem 4 (Araki [A]) Let(O,7) be aC*-dynamical system and denotedthe infinitesimal generator af. A
statew is (7, 3)-KMS if and only if it isT-invariant and satisfies the so called differentiaKMS condition

—1Bw(A*6(A)) > s(w(A™A), w(AA")), 3)
forall A € Dom}.

KMS states satisfy various correlation inequalities of tigge (3), some of which are characteristic (see
[Fannes-Verbeure inequalities], [Bogoliubov correlatinequality], as well as [BR2], [FV]). They play an im-
portant role in proving other characterizations of KMS egatAraki's Gibbs condition(a quantum substitute for
the DLR equation) and variational principle for latticersgystems (Chapter 6.2 in [BR2]) and lattice fermions
(JAMY]), see also [Quantum Gibbs-states].



3 Perturbation theory

As thermodynamic equilibrium states, KMS states enjoy almemof stability properties. We shall only discuss

one of them here: Structural stability with respect to lqaeturbations of the dynamics. The reader should consult

[Stability and passivity of quantum states] and [Returndoibrium] as well as [BR2] for more such properties.
Let (O, 7) be aC*- or W*-dynamical system and a (7, 3)-KMS state. Consider the local perturbation

of 7 by a self-adjoint elemerit € O (see Section 5 in [Quantum dynamical systems]). In the Gig&eentation

(Hy, 7w, ) the perturbed dynamics is unitarily implemented by

7o (T4 (A)) = eit(Lw+Q)m(A)e—it(Lw+Q)7
whereL,, is thew-Liouvillean and@ = =, (V).

Theorem 5 (Araki's perturbation theory) The cyclic vectof?,, belongs to the domain ef #(L++Q)/2 and

e PALot@)/2Q)

1% _ _
w' (4) = (Py|r,(4)Py), Py = [e-PEAQDZQ ||’

isa(ry, 3)-KMS state. The GNS representatiortbinduced byuy is (H.,, 7., ¥y ). Moreover, the map — w"
is a bijection between the set @f, 5)-KMS states and the set of/, 5)-KMS states.

In the W*-case, Araki's theorem extends to perturbed dynamics gésabby unbounded perturbatiofs
affiliated tor, (O), see [DJP].
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