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In this article we describe the construction of canonical Non-Equilibrium Steady States (NESS) for a small
quantum systemS coupled to several extended reservoirsR1,. . . ,RM (see [Nonequilibrium steady states]). We
shall work in the framework ofC∗-dynamicalsystems and denote byO0 theC∗-algebra ofS which we assume
to be finite dimensional. Each reservoirRj is described by aC∗-algebraOj . For simplicity we assume that the
algebra of the joint systemS + R1 + · · · + RM is theC∗-tensorproductO = OS ⊗ OR = ⊗0≤a≤MOa. The
following is easily adapted to more general cases, e.g., fermionic algebras.

For 0 ≤ a ≤ M let (Oa, τa) be theC∗-dynamical system describing the isolated subsystema. The dynamics
of the decoupled joint system isτ = ⊗0≤a≤Mτa. The dynamicsτV of the coupled joint system is the local
perturbation ofτ induced by

V =
∑

1≤j≤M

Vj , Vj = V ∗
j ∈ O0 ⊗Oj ,

whereVj is the interaction betweenS andRj (see [Quantum dynamical systems]).

Definition 1 Let ω be a state onO. We say thatω+ is a NESS ofτV associated to the reference stateω if there
exists a nettα → ∞ such that

ω+(A) = lim
α

1

tα

∫ tα

0

ω ◦ τ t
V (A) dt,

for all A ∈ O. We denote byΣ+(τV , ω) the set of these NESS.

A few remarks are in order:

1. By definition the elements ofΣ+(τV , ω) areτV -invariant states onO. Moreover, ifω is such a state then
Σ+(τV , ω) = {ω}.

2. Strictly speaking, one should exclude the cases where thelimit ω+ turns out to be a KMS state forτV .
This occurs trivially ifω is such a state, but is also expected whenω is (normal relative to) a KMS state
for the decoupled dynamicsτ (see [Return to equilibrium]). In this caseω+ will be ω-normal. In genuine
nonequilibrium casesω+ is expected to be singular with respect toω.

3. Entropy production plays a central role in nonequilibrium statistical mechanics. We refer to [Entropy Produc-
tion] for a discussion of related properties of NESS. Let us just mention here that NESS have a non-negative
entropy production rate.

4. Since the set of all states onO is weak-∗ compactΣ+(τV , ω) is not empty.

5. If the perturbationV is time dependent then natural nonequilibrium states (NNES) are defined in a similar
way as limit points

ωt
+(A) = lim

α

1

tα

∫ t

−tα

ω ◦ τ s→t
V (A) ds.

They satisfyωt
+ ◦ τ t→r

V = ωr
+ (see [R]).
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As stressed in [Nonequilibrium steady states], a NESS should be insensitive to local perturbations of the initial
stateω. The following result, proved in [AJPP1] (see also [JP2]), shows that this is indeed the case under a rather
weak ergodic hypothesis.

Theorem 2 Assume thatω is a factor state onO and that, for anyω-normal stateη,

lim
t→∞

1

t

∫ t

0

η([τ s
V (A), B]) ds = 0,

holds for allA, B in a dense subset ofO (weak asymptotic Abelianness in mean). ThenΣ+(τV , η) = Σ+(τV , ω)
holds for allω-normal statesη.

In typical applications the reference stateω will be specified by the requirement that its restrictions tothe
subalgebrasOa areβa-KMS states1 for the corresponding dynamicsτa. This means thatω is a KMS state at
inverse temperature−1 for the dynamicsσt

ω = ⊗aτ−βat
a . In particular,ω is modular andσω is its modular

group (see [Tomita-Takesaki theory]). The groupσω plays an important and somewhat unexpected role in the
mathematical theory of linear response (see [Linear response theory]).

Accordingly, we shall assume in the remaining of this paragraph thatω is modular and denote by(Hω, πω,Ωω)
the correspondingGNSrepresentation ofO. TheenvelopingvonNeumannalgebraπω(O)′′ is in standardform and
we denote byJ themodularconjugation. IfL is thestandardLiouvillean ofτ thenLV = L+πω(V )+Jπω(V )J
is the standard Liouvillean ofτV . The spectral analysis ofLV yields interesting information on the structure of
Σ+(τV , ω) (see [AJPP1]).

Theorem 3 Assume that the stateω is modular.

1. If Ker LV = {0} then there is noω-normal τV -invariant state. In particular, any NESS inΣ+(τV , ω) is
purelyω-singular.

2. If the assumptions of Theorem 2 hold and ifKer LV 6= {0} then it is one dimensional and there exists a
uniqueω-normalτV -invariant stateωV . Moreover,Σ+(τV , ω) = {ωV }.

As already mentioned, case 1 in the above theorem is the expected behavior out of equilibrium while case 2
describes a typical equilibrium situation.

To our knowledge, there are two approaches to the construction of NESS which we now describe.

The scattering approach

The first approach was proposed by Ruelle in [R] and rely on thescattering theory ofC∗-dynamical systems (see
[Ro]). We also refer to [FMU] and [JOP] for related papers.

The scattering approach assumes the existence of the stronglimit

αV = s − lim
t→∞

τ−t ◦ τ t
V . (1)

If it exists, this limit defines an isometric∗-endomorphism ofO such thatαV ◦ τ t
V = τ t ◦ αV , a so called Møller

morphism.αV is injective but its rangeO+, aτ -invariantC∗-subalgebra ofO, can be strictly smaller thanO. One
immediately obtains

Proposition 4 Assume that the Møller morphism (1) exists and thatω is τ -invariant. It follows that, for allA ∈ O,

lim
t→∞

ω ◦ τ t
V (A) = ω+(A),

whereω+ = ω ◦ αV . In particular, one hasΣ+(τV , ω) = {ω+}.

1chemical potentials can also be prescribed by appropriate definition of τ
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If the previous proposition applies thenαV provides an isomorphism between the the coupled dynamical sys-
tem(O, τV , ω+) and the decoupled one(O+, τ |O+

, ω|O+
). Ergodic properties of the latter are therefore inherited

by the former. The following proposition is a simple consequence of this fact (see [AJPP1]).

Proposition 5 Assume that the assumptions of Proposition 4 hold.

1. If ω|O+
is ergodic forτ |O+

thenΣ+(τV , η) = {ω+} for anyω-normal stateη.

2. If ω|O+
is mixing forτ |O+

then
lim

t→∞
η ◦ τ t

V (A) = ω+(A),

holds for allA ∈ O and anyω-normal stateη.

For a finite system coupled to infinite reservoirs we expectO+ = OR so that the coupled system out of
equilibrium inherit the ergodic properties of the reservoirs.

C∗-scattering is much more difficult than Hilbert-space scattering and the only known technique to deal with
it is the basic Cook’s method. We refer to [R], [FMU], [AJPP2]and [JOP] for more details and examples.

The Liouvillean approach

This alternative to the scattering approach has been proposed in [JP1] where the NESS of aN -level quantum
system coupled to ideal Fermi reservoirs is constructed. For this kind of systems it has not yet been possible to
obtain the propagation estimates needed to construct the Møller morphism. In fact it is not clear that the scattering
approach applies in this case.

In the Liouvillean approach, NESS are related to resonancesof a new kind of generator of the dynamics in the
GNS representation: TheC-Liouvillean. The main advantage of this method is that the required analysis can be
performed in a Hilbert space setting. The technical difficulties are related to the fact that theC-Liouvillean is not
self-adjoint on the GNS Hilbert space. We shall only describe the strategy here and refer the reader to [JP1] for
detailed implementation.

We assume thatω is modular and work directly in the GNS representation(Hω, πω,Ωω), identifyingO with
πω(O). Recall thatσω is the modular group ofω, J the modular conjugation andL, LV the standard Liouvilleans
of τ , τV . Denote by∆ω themodularoperator.

Definition 6 If t 7→ σt
ω(V ) is analytic in the strip{z ∈ C | |Im z| < 1/2} and bounded continuous in its closure

then theC-Liouvillean ofτV is the closed operator defined on the domain ofL by

KV = L + V − Jσ−i/2
ω (V )J.

SinceJσ
−i/2
ω (V )J ∈ πω(O)′ one easily checks thateitKV Ae−itKV = τ t

V (A). Moreover, sinceLΩω = 0 it
follows from modular theory that

KV Ωω = V Ωω − J∆1/2
ω V ∆−1/2

ω JΩω = V Ωω − J∆1/2
ω V Ωω = (V − V ∗)Ωω = 0.

Henceω ◦ τ t
V (A) = (Ωω|e

itKV AΩω) = (e−itK∗

V Ωω|AΩω) whereK∗
V = L + V − Jσ

i/2
ω (V )J .

Suppose there exists a Gelfand tripletK ⊂ Hω ⊂ K′ and a dense subalgebrãO ⊂ O such thatÕΩω ⊂ K and

w∗−lim
t→∞

1

t

∫ t

0

e−isK∗

V Ωω ds = Ψ ∈ K′,

holds inK′. Then the functionalÕ ∋ A 7→ (Ψ|AΩω) extends by continuity to a stateω+ on O and we can
conclude thatΣ+(τV , ω) = {ω+}. Note that ifΨ ∈ Hω thenω+ is ω-normal. Thus, we expect thatΨ 6∈ Hω in
genuine nonequilibrium situations. Under appropriate conditions one can show thatΨ is a zero-resonance vector
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of K∗
V i.e., that there exists an extension ofK∗

V toK′ of whichΨ is a zero eigenvector. In [JP1] and more recently
in [MMS] spectral deformation techniques have been used to gain perturbative control on the resonances ofK∗

V .
This yields a convergent expansion for the NESSω+ in powers of the couplingV which, to lowest order, coincide
with the weak coupling (van Hove) limit studied in [LS]. It also gives the convergenceν ◦ τ t

V (A) → ω+(A) for
all ω-normal statesν and allA ∈ O with a precise estimates on the exponential rate of convergence for dense sets
of suchν andA.
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