NESS in quantum statistical mechanics
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In this article we describe the construction of canonicahNguilibrium Steady States (NESS) for a small
guantum systen$ coupled to several extended reservais,... R, (see [Nonequilibrium steady states]). We
shall work in the framework of*-dynamicalsystems and denote &), the C*-algebra ofS which we assume
to be finite dimensional. Each reserv@y; is described by @' -algebra®;. For simplicity we assume that the
algebra of the joint systel + R1 + - - - + Ry is theC*-tensorproductO = Os @ Or = ®o<a<mOq. The
following is easily adapted to more general cases, e.gnifeic algebras.

For0 < a < M let(O,, 1,) be theC*-dynamical system describing the isolated subsystefrhe dynamics
of the decoupled joint system is = ®o<.<m7,. The dynamicsry of the coupled joint system is the local
perturbation ofr induced by

V=YV, V;=Ve€0®0;,

1<G<M
whereV; is the interaction betwee$i andR ; (see [Quantum dynamical systems]).

Definition 1 Letw be a state orD. We say thatv is a NESS ofy, associated to the reference statef there
exists a net,, — oo such that

ta
wy(A) = lim ti / wo T (A)dt,
« «a 0
forall A € O. We denote by, (7, w) the set of these NESS.

A few remarks are in order:

1. By definition the elements &f, (7v,w) arery-invariant states o®. Moreover, ifw is such a state then
Ei(rv,w) ={w}

2. Strictly speaking, one should exclude the cases wheréniiew, turns out to be a KMS state faf;, .
This occurs trivially ifw is such a state, but is also expected wheis (normal relative to) a KMS state
for the decoupled dynamies(see [Return to equilibrium]). In this case will be w-normal. In genuine
nonequilibrium cases . is expected to be singular with respect.to

3. Entropy production plays a central role in nonequilibristatistical mechanics. We refer to [Entropy Produc-
tion] for a discussion of related properties of NESS. Letuss mention here that NESS have a non-negative
entropy production rate.

4. Since the set of all states @¢his weak+ compact (7y,w) is not empty.
5. If the perturbatiori/ is time dependent then natural nonequilibrium states (NNES defined in a similar
way as limit points
1 t
wh (A) = lim — / wo Tyt (A)ds.

a to J_y,

They satisfyw’, o 7{,"" = W', (see [R]).



As stressed in [Nonequilibrium steady states], a NESS shmiinsensitive to local perturbations of the initial
statew. The following result, proved in [AJPP1] (see also [JPAipws that this is indeed the case under a rather
weak ergodic hypothesis.

Theorem 2 Assume that is afactor state onO and that, for anyv-normal statey,

t
lim 1/ n([ri (A), B])ds =0,
t—oo t 0

holds for all A, B in a dense subset @ (weak asymptotic Abelianness in mean). Ther{ry,n) = X4 (1v,w)
holds for allw-normal states.

In typical applications the reference statewill be specified by the requirement that its restrictionghe
subalgebra®), are 3,-KMS state$ for the corresponding dynamies. This means that is a KMS state at
inverse temperature-1 for the dynamicss!, = ®,7,%t. In particular,w is modular ando,, is its modular
group (see [Tomita-Takesaki theory]). The graup plays an important and somewhat unexpected role in the
mathematical theory of linear response (see [Linear resptireory]).

Accordingly, we shall assume in the remaining of this paapgrthatv is modular and denote Wy, 7., .,)
the correspondinGNSrepresentation . TheenvelopingzonNeumanralgebrar,, (O)” is in standardorm and
we denote by/ themodularconjugation. IfL is thestandard.iouvillean of - thenLy = L+ 7, (V) + Jm,, (V) J
is the standard Liouvillean ofi,. The spectral analysis dfy yields interesting information on the structure of
Y4 (tv,w) (see [AJPP1]).

Theorem 3 Assume that the stateis modular.

1. If Ker Ly = {0} then there is nav-normal m -invariant state. In particular, any NESS B, (v, w) is
purelyw-singular.

2. If the assumptions of Theorem 2 hold an&#r Ly, # {0} then it is one dimensional and there exists a
uniguew-normaly -invariant statevy. MoreoverX (1v,w) = {wy }.

As already mentioned, case 1 in the above theorem is the txbbehavior out of equilibrium while case 2
describes a typical equilibrium situation.
To our knowledge, there are two approaches to the consirucfiNESS which we now describe.

The scattering approach

The first approach was proposed by Ruelle in [R] and rely orstia¢tering theory of*-dynamical systems (see
[Ra]). We also refer to [FMU] and [JOP] for related papers.
The scattering approach assumes the existence of the $itrohg

ay =s—lim7 t o7l Q)
t—oo

If it exists, this limit defines an isometricendomorphism o® such thatvy o 7, = 7% o ay, @ so called Mgller
morphism.ay is injective but its rang€® ., aT-invariantC*-subalgebra of, can be strictly smaller tha@. One
immediately obtains

Proposition 4 Assume that the Mgller morphism (1) exists and that7-invariant. It follows that, for allA € O,

lim wo 7, (A) = wy(A),

t—o0

wherew; = w o ay. In particular, one has | (v, w) = {w4 }.

1chemical potentials can also be prescribed by appropriditeititen of ~



If the previous proposition applies ther, provides an isomorphism between the the coupled dynamysal s
tem (O, 7y, w4 ) and the decoupled on®.., 7|0, ,w|o, ). Ergodic properties of the latter are therefore inherited
by the former. The following proposition is a simple consengee of this fact (see [AJPP1]).

Proposition 5 Assume that the assumptions of Proposition 4 hold.
1. lfw|e, is ergodic forr|p, thenX (1y,7n) = {w, } for anyw-normal state).

2. Ifw|o, is mixing forr|p, then
lim 7 o, (A) = w,.(4),

t—o0

holds for all A € O and anyw-normal state.

For a finite system coupled to infinite reservoirs we exg@¢t = Ox so that the coupled system out of
equilibrium inherit the ergodic properties of the resersoi

C*-scattering is much more difficult than Hilbert-space sraty and the only known technique to deal with
it is the basic Cook’s method. We refer to [R], [FMU], [AJPR2]d [JOP] for more details and examples.

The Liouvillean approach

This alternative to the scattering approach has been pedpos[JP1] where the NESS of &-level quantum
system coupled to ideal Fermi reservoirs is constructed.ttis kind of systems it has not yet been possible to
obtain the propagation estimates needed to construct thledizorphism. In fact it is not clear that the scattering
approach applies in this case.

In the Liouvillean approach, NESS are related to resonamicasiew kind of generator of the dynamics in the
GNS representation: The-Liouvillean. The main advantage of this method is that #guired analysis can be
performed in a Hilbert space setting. The technical diffieslare related to the fact that theLiouvillean is not
self-adjoint on the GNS Hilbert space. We shall only descthe strategy here and refer the reader to [JP1] for
detailed implementation.

We assume that is modular and work directly in the GNS representatéf,, r,,, 2.,), identifying O with
7, (0). Recall that,, is the modular group ab, J the modular conjugation and, Ly, the standard Liouvilleans
of 7, 7. Denote byA,, themodularoperator.

Definition 6 If ¢t — ! (V) is analytic in the strip{z € C||Im z| < 1/2} and bounded continuous in its closure
then theC-Liouvillean ofry is the closed operator defined on the domaird dfy

Ky =L+V —Jo V3(V)J.
Since Jo,/?(V)J € m,(O) one easily checks thai'v Ae~*Kv = 7i(A). Moreover, sincel.Q,, = 0 it
follows from modular theory that

KyQ, =VQ, - JAY2VAZY210, =vQ, — JAY?VQ, = (V - VHQ, =0.

Hencew o 7, (A) = (Qu[e5V AQ,) = (e 7570, |AQ,,) whereK;, = L+ V — Joll*(V)J.
Suppose there exists a Gelfand triptetc H,, ¢ K’ and a dense subalgelfac O such tha¥OQ),, c K and

t

1 -
w*—lim - e KV, ds =0 e K,
t—o0 0

holds inK’. Then the functionald > A — (¥]AQ,,) extends by continuity to a state, on © and we can
conclude thak, (7y,w) = {wy}. Note that if¥ € H,, thenw. is w-normal. Thus, we expect thdt ¢ H,, in
genuine nonequilibrium situations. Under appropriateditions one can show that is a zero-resonance vector



of K3, i.e., that there exists an extensionff, to K’ of which ¥ is a zero eigenvector. In [JP1] and more recently
in [MMS] spectral deformation techniques have been usecio gerturbative control on the resonancedf.
This yields a convergent expansion for the NESSin powers of the coupling” which, to lowest order, coincide
with the weak coupling (van Hove) limit studied in [LS]. Itsal gives the convergeneeo 7, (A) — w, (A) for

all w-normal states and allA € O with a precise estimates on the exponential rate of conaemfr dense sets
of suchr and A.
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