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1 Introduction

1.1 Open systems

Open quantum systems are the basic paradigms of non-ggquililguantum sta-
tistical mechanics. An open system consists of a “smalltesysS interacting
with a number of large “environments” or “reservoirg, ..., R.

The properties of a physical system out of thermal equiuiiorare usually de-
scribed in term of phenomenological concepts like steaate stiluxes and entropy
production. These notions are related by the fundamemal ¢ thermodynam-
ics. As an illustration, consider a model describing a ssydtemsS coupled to
two infinite heat reservoirR ,R, which are at temperatufg, 7>. Under normal
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Figure 1: A system coupled to two heat reservoirs
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conditions, one expects that the combined system willes@itb a steady state
in which there is a constant flow of heat from the hotter to tbleler reservoir
across the systeii. Let &, be the heat current flowing from reservaiy, into
the small systens, andEp the entropy production rate ifi. In the steady state,
the fundamental laws of thermodynamics read:

qbl + q@g - 0,

1)
o D
T, + T, Ep <0.

The first relation expresses energy conservation (thedinsof thermodynamics).
The second asserts that the heat flows from the hotter to tdera@servoir and
that the entropy of is not decreasing (the second law of thermodynamics).

Our goal is to give a precise mathematical meaning to theonstof non-
equilibrium steady state, entropy production and hest 8ty their properties
and prove Relations (1) from first principles.
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1.2 Linear response

Linear response theory describes thermodynamics in themeeghere the “for-
ces” driving the system out of equilibrium are weak. In suchegime, to a
very good approximation, the non-equilibrium currents eteplinearly on the
forces. The ultimate purpose of linear response theory jasiify well known
phenomenological laws like Ohm'’s law for charge currentBiok’s law for heat
currents. We are still far from a satisfactory derivatiorttedse laws, even in the
framework of classical mechanics; see [BLR] for a recenexgwn this matter. A
less ambitious application of linear response theory corscgansport properties
of microscopic and mesoscopic quantum devices (the adsanecenotechnolo-
gies during the last decade have triggered a strong interéisé transport prop-
erties of such devices). Linear response theory of suclessts much better
understood, as we shall try to illustrate.

In the example of the previous subsection, the force thaedhe systens +
R out of equilibrium is the differencé&, — T of temperatures of the reservoirs
attached t&. If both temperature®, , T; are sufficiently close to some valiig,,,
we expect linear response theory to give a good account dhérenodynamics
of the system near thermal equilibrium at inverse tempegdfy,,.

In phenomenological non-equilibrium thermodynamics, dioality between
the driving forces,,, also calledaffinities,and the steady currends, they induce
is expressed by the entropy production formula

Ep = ZF"‘ P, (2)

(see [DGM]). The steady currents are themselves functibtiseaffinities®,, =
®,(Fy,--+). Inthe linear response regime, these functions are givehéyela-
tions

q)a = Z La'yF'ya (3)
Y

which define theransport coefficients,,, .
Combining (3) with the first law of thermodynamids  ®, = 0 we obtain

that for all~,
> Loy =0. (4)

Similarly, (2), (3) and the second laldp > 0 imply that the quadratic form

> LoyFuF,,
ay
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is non-negative. Note that this does not imply that the mdtris symmetric !

Linear response theory goes far beyond the above elemeatatipns. Its true
cornerstones are th@nsager reciprocity relationfORR), the Kubdluctuation-
dissipationformula (KF) and theCentral Limit Theoren{CLT). All three of them
deal with the transport coefficients. The Onsager recipraeiations assert that
the matrixL,, of a time reversal invariant (TRI) system is symmetric,

L'ya — La'y- (5)

For non-TRI systems, similar relations hold between thagjpart coefficients
of the system and those of the time reversed one. For exaihpiee rever-
sal invariance is broken by the action of an external magrietid B, then the
Onsager-Casimir relations

hold.
The Kubo fluctuation-dissipation formula expresses thespart coefficients
of a TRI system in terms of thequilibriumcurrent-current correlation function

Cun1) = 5 (@alt)B,(0) + B (0), (1)), ©)
namely
1 o0
Loy = 5 /_ Car(0) (7)

The Central Limit Theorem further relatés,, to the statistics of the current
fluctuations in equilibrium. In term of characteristic fuilon, the CLT for open
systems in thermal equilibrium asserts that

I 1
. . -3 E ay Da'y faf‘y
thm <exp (1 Ea ga_\/l_f/o D, (s) ds>> =e , (8)

equ

where the covariance matrix,, is given by
Doy = 2 Loy,

Because fluxes do not commute in quantum mechanfigs,®,| # 0 for
a # v, they can not be measured simultaneously and a simple cdhgsbba-
bilistic interpretation of (8) for the vector variable = (¢, @, ...) is not pos-
sible. Instead, the quantum fluctuations of the vector btei@ are described
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by the so-calledluctuation algebrdGVvV1, GVV2, GVV3, GVV4, GVV5, Ma].
The description and study of the fluctuation algebra invelvmewhat advanced
technical tools and for this reason we will not discuss thenqum CLT theorem
in this lecture.

The mathematical theory of ORR, KF, and CLT is reasonably wederstood
in classical statistical mechanics. In the context of opeandgum systems these
important notions are still not completely understood (s@eever [AJPP, JPR2]
for some recent results).

1.3 Reference state

The concept of reference state will play an important rol®un discussion of
non-equilibrium statistical mechanics. To clarify thigioa, let us consider first
a classical dynamical system with finitely many degreeseddom and compact
phase spac& C R". The normalized Lebesgue measdreon X provides a
physically natural statistics on the phase space in theesias initial configura-
tions sampled according to it can be considered typicale Nwit this has nothing
to do with the fact thatlx is invariant under the flow of the system—any mea-
sure of the formp(z)dz with a strictly positive density would serve the same
purpose. The situation is completely different if the sgsteas infinitely many
degrees of freedom. In this case, there is no natural replkacefor the Lebesgue
dz. In fact, a measure on an infinite-dimensional phase spacqatily describes
a thermodynamical state of the system. Suppose for examgldghe system is
Hamiltonian and is in thermal equilibrium at inverse tengberes and chemical
potential;;. The statistics of such a system is described by the Gibbsunea
(grand canonical ensemble). Since two Gibbs measures viiéneht values of
the intensive thermodynamic parametgrg: are mutually singular, initial points
sampled according to one of them will be atypical relativeheother. In conclu-
sion, if a system has infinitely many degrees of freedom, vesirie specify its
initial thermodynamic state by choosing an appropriaterssfce measure. As in
the finite-dimensional case, this measure may not to beiavaunder the flow. It
also may not be uniquely determined by the physical sitnati®wish to describe.
The situation in quantum mechanics is very similar. The &iclgeer represen-
tation of a system with finitely many degrees of freedom is€asally) uniquely
determined and the natural statistics is provided by angtlstpositive density
matrix on the Hilbert space of the system. For systems withitely many de-
grees of freedom there is no such natural choice. The corsegs of this fact
are however more drastic than in the classical case. There msatural choice
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of a Hilbert space in which the system can be representednduce a repre-
sentation, we must specify the thermodynamical state o$yiseem by choosing
an appropriate reference state. The algebraic formulatiauantum statistical
mechanics provides a mathematical framework to study sufatite system in a
representation independent way.

One may object that no real physical system has an infinitebeuraf de-
grees of freedom and that, therefore, a unique naturabeterstate always exists.
There are however serious methodological reasons to aaméid mathematical
idealization. Already in equilibrium statistical mechesithe fundamental phe-
nomena of phase transition can only be characterized in lhemettically precise
way within such an idealization: A quantum system with filyitmany degrees
of freedom has a unique thermal equilibrium state. Out ofldxjiwm, relaxation
towards a stationary state and emergence of steady cuo@mtisot be expected
from the quasi-periodic time evolution of a finite system.

In classical non-equilibrium statistical mechanics thexests an alternative
approach to this idealization. A system forced by a non-Htaman or time-
dependent force can be driven towards a non-equilibriuesdststate, provided
the energy supplied by the external source is removed by sherenostating
device. Thismicro-canonicalpoint of view has a number of advantages over
the canonical infinite system idealization. A dynamical system with atskely
small number of degrees of freedom can easily be exploreccomauter (numer-
ical integration, iteration of Poincar sections, ...). Agebody of “experimental
facts” is currently available from the results of such irtigegtions (see [EM, Do]
for an introduction to the techniques and a lucid expositibthe results). From a
more theoretical perspective, the full machinery of firdterensional dynamical
system theory becomes available in the micro-canonicaloagh. TheChaotic
Hypothesisntroduced in [CG1, CG2] is an attempt to exploit this fatjuktifies
phenomenological thermodynamics (Onsager relationsatimesponse theory,
fluctuation-dissipation formulas,...) and has lead to morexpected results like
the Gallavotti-Cohen Fluctuation Theorem. The major draeibof the micro-
canonical point of view is the non-Hamiltonian nature of thgamics, which
makes it inappropriate to quantum-mechanical treatment.

The two approaches described above are not completelyatedelFor exam-
ple, we shall see that the signature of a non-equilibriuradstestate in quantum
mechanics is its singularity with respect to the referematesa fact which is well
understood in the classical, micro-canonical approach Gepter 10 of [EM]).
More speculatively, one can expect a geneqlivalence principléor dynam-
ical (micro-canonical and canonical) ensembles (see [RuBje results in this
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direction are quite scarce and much work remains to be done.

2 Quantum dynamical systems

2.1 (C*dynamical systems
A C*- dynamical system is a pai©, 7), where

e O is aC*-algebra. For our purposes, we can thinkdfas a norm closed
self-adjoint subalgebra of bounded operators on some Hidpacet. In
particular,O is a Banach space and we denote®yits dual.

e 7' is a strongly continuous group efautomorphisms o). That is, " is
a linear map or© such that'(AB) = 7'(A)r"(B) and7r'(A*) = 7' (A)*.
Moreover, the map — 7!(A) is norm-continuous and satisfies the group
propertyr’ o 7°(A) = r'+5(A) foreachA € O .

We always assume thdtc O. The elements o) describe observables of the
physical system under consideration and the grosipecifies their time evolution
in the Heisenberg picturd; = 7'(A).

From the general theory of strongly continuous semigrotipsie exists a
densely defined, norm closed linear operatan O such thatr! = . Since
r'(I) = I, if follows that7 € D(4) andd(I) = 0. Differentiation of the identities
T (AB) = t'(A)7(B) andr!(A4*) = 7'(A)* for A, B € D(§) further show that
D(0) is ax-subalgebra o and that

S(AB) = §(A)B + AS(B),  8(A*) = 6(A)*.

Such an operator of! is called«-derivation.
A state of the system is a linear functionak O* satisfying

o w(A*A) > 0 (positivity).
e ||w|| =1 (normalization).

A linear functionalw on O satisfying these two conditions is automatically con-
tinuous (hence belongs t8*) and satisfies/(I) = 1.
Let us denote byt the unit ball ofO*. The set of all states of? is

E(0) ={w € Of|w(A*A) > 0forall A € O},
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from which it follows that it is a convex, weak€ompact subset ab*.
Assuming that the system was initially in the statehe expectation value of
the observablel at timet is the numbetw(A;). Since

w(Ay) = w(t'(A)) =wot'(A),

states evolve in the Schrodinger picture according;te- w o 7.

A statew € F(O) is calledr- invariant, or steady state,dfo 7 = w for all ¢.
A C*-dynamical system has at least one (and typically manyjigtstates.

The thermal equilibrium states of @*-dynamical system are characterized
by the KMS condition. Let3 > 0 be the inverse temperature. A stateis
(1, 3)-KMS if, for all A, B € O, there is a functiorF4 p analytic inside the strip
{#]0 < Imz < $}, bounded and continuous on its closure, and satisfying the
KMS boundary conditions

Fup(t) = w(ATY(B)), Fup(t+1ip8) = w(t'(B)A),
fort € R. A KMS state isr- invariant.

Exercise 1 Let A be a finite dimensional Hilbert space aifla self-adjoint op-
erator on’H. Consider the”*-dynamical systerti3(H), ) defined by

Tt(A) — 6itHA 67itH.
Show that for any € R, its uniques-KMS state is given by
wp(A) = Tr(psA),

where
e PH

PP = Tyopm"

Note that a(r, 3)-KMS state is also d7', 5')-KMS state for the dynamics
defined byr"t = 7*4/%". Even though, in most systems, the physical temperature
IS a non-negative parameter, it is mathematically conveneedefine KMS state
forall 5 € R. The cased = 0 corresponds to infinite temperature gnd0)-KMS
states{- invariant traces) are sometimes called chaotic stateéeelmathematical
litterature, (7, 3)-KMS states for3 = —1 are simply called-KMS states.
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2.2 Cyclic representation and modular structure

Letw be a positive linear functional on tii&-algebra®. We denote by, 7, 2,,)
the GNS-representation 6f associated ta.

A linear functionaly € O* is calledw-normal, denote@ < w, if there exists
a trace class operatey, on A, such thatu(-) = Tr(p,7,(:)). Any w-normal
linear functional: has a unique normal extension to the enveloping von Neumann
algebrad,, = 7, (0)". We denote byV,, the set of allv-normal states\,, is a
norm closed convex subset B1O).

If v is another positive linear functionals @h thenr < w iff N, € N,,. w
andv are said to be quasi-equivalent\f, = A/, and disjoint ifA/, " N, = 0.

If v > ¢ > 0 for somew-normal linear functionap implies¢ = 0 we say that
v andw are mutually singular (or orthogonal), and writel w. An equivalent
(more symmetric) definitionisz L wiff v > ¢ > 0andw > ¢ > 0imply ¢ = 0.

If » andw are disjoint, them | w. The converse does not hold— it is possible
thatr andw are mutually singular but not disjoint.

A positive linear functional has a unique decomposition= v,, + v, where
vy, Vs are positive linear functional;,, < w, andr, L w. Moreover,v, andv,
are disjoint. The uniqueness of the decomposition imphasif v is T-invariant,
then so arey,, andv,.

A statew is called factor state (or primary state) if its envelopiegWeumann
algebra s a factate, if 9,N9M!, = CI. Itis called modular if,, is a separating
vector fordt, i.e, if AQ, = 0for A € M, impliesA = 0. This condition is
equivalent to the cyclicity of2,, for the commutar®t! . Any KMS state at inverse
temperature? € R is modular.

Assume that is a modular state o®. The formula

AQ, > A*Q,.

defines an anti-linear map on the dense subspa®®_(2,. A simple calculation
show thatt! Q, C D(S*) and

S*BQ, = B*Q,,.
SinceMt! 2, is denseS is closable and its closure has a polar decomposition
S =JAY?,

where.J is anti-unitary and\ is a positive self-adjoint operator. Also of interest
Is the norm closur@ of the set

{ATAQ,|A € M),



Open Quantum Systems 11

The main results of Tomita-Takesaki are contained in theviohg

Theorem 2.1 The anti-unitary operatoy is a conjugation,/? = I, such that
JA =AT"T
Forany¥ € P and anyA € 9, one has
JU =V,  AJAJP CP,

moreover,
JM,J =M.

The unitary group\™ satisfies
A'Q,=Q,,  A'"PCP,
for all £ € R and generates a group efautomorphisms dii,,,

ol (A) = ATAAT,

o, 1S the unique group of-automorphisms dbt, for whichw is a KMS state (at
inverse temperaturg = —1).

J is called the modular conjugation), the modular operatos;,, the modular
group andP the natural cone.

An important property of the natural cone is that for eventesy € N, there
is a unique vectof?,, € P such thaty(-) = (Q,, 7,(-)$2,). Moreover, ifr is a
C*- dynamics or© (not necessarily leaving the statenvariant), then there is a
unique self-adjoint operatdr on 7, such that, for alt,

m(r(4)) = i (A)e

. 9)
e P Pp.

The operatod. is called the standard Liouvillean. The first formula in (8pas
us to extend- to all of M1,,.

A staten € N, is r-invariant iff LQ, = 0. Thus, the study ofs--normal,
T-invariant states reduces to the studylafr L. This is the first link between
guantum statistical mechanics and modular theory. Thenseope is Takesaki’s
theoremw is a(r, 3)-KMS state iff

A=e Pl (10)
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The third link is quantum Koopmanism: The spectral propsrbf the standard
Liouvillean L encode the ergodic properties of the quantum dynamicaésyst
(O, 1,w) in complete analogy with Koopman’s lemma of classical ergtiteory
[JP1, JP3]. For example, if the stateis modular, then O, r,w) is ergodic iff
zero is a simple eigenvalue &f Moreover, the system returns to equilibrium if
the singular spectrum df reduces to this simple eigenvalue.

2.3 Perturbation theory

Let (O, ) be aC*-dynamical system and denote bjts generator. Aocal per-
turbationof the system is obtained by perturbing its generator withitbunded
x-derivation associated with a self-adjoint elemg&nf O

(sV:(S-}-Z[V, ‘],

with D(6y) = D(6). Since this is a bounded perturbation, there is a Dyson
expansion for the perturbed group = e'v

(X)) = (11)
+ Z/dtl /Né“zvl V)il il (V) 7)) )

which is norm convergent for anye R and anyX € O. Another useful repre-
sentation of the locally perturbed dynamics is itfiteraction picture The Ansatz

(X)) = TLrH(X)Te. (12)
leads to the differential equation
oLy, =il (V),

with the initial conditionI}, = I. It follows thatT", is a unitary element o
which has a norm convergent expansion

Mo T exp{ /tTS(V)d}

© IN—1
= ]+ZZN/dt1 / dty 7 (V) -+ (V). (13)

N=1
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Moreover,I', satisfies the cocycle relations
DY = Ty r(1) = 7 (05T, (14)

Let (H, ) be a representation @ carrying a unitary implementatiofi’ of
the unperturbed dynamia$

m(r'(X)) = Uln(X)U"™.

The interaction picture shows théf. = «(I',)U* unitarily implementr. in this
representation (the group property follows from the coeyarbperty (14)). From
the expansion (13) we get norm convergent expansion (tagraltis in the strong
Riemann sense)

tNl
LQ-—UV+§: /ﬁh /' N U (VYU gt (1)U

Let Gy be the self-adjoint generator bf,. Applying the last formula to a vector
® € D(Gy) and differentiating at = 0 we obtain® € D(Gy) and

Gy =G+r(V). (15)

Note however that the unitary implementation§f in H is by no means
unigue.e”¥ is another implementation if and only if

6itGV7r(X)e—itGV — 6itK7r(X)e_itK,

for all X € O and allt. Thuse?Xe~#“v must be a unitary element af ©)’ for
all t. SuchK are easily obtained by setting

K=Gy-W=G+n=(V)-W,

whereW is a self-adjoint element of(O)'. ThenT;, = ¢Ke~iCv satisfies the
differential equation

o,k = —iTL W,
with Wt = e“v e #Gv and initial valuel'y), = I. Sincee®v = r(T%,)e"“
ande®™“We=¢ ¢ 1(O)' for all t, we havelV! = e“1Ve~C andlY; is given by
the norm convergent time-ordered exponential

t
I =T —exp {—z/ Wsds} :
0
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In the special case of the cyclic representation of a modiidew, the choice
Ut = et W = Jr,(V)J,
whereL is the standard Liouvillean of leads tol';, = JT't,.J and hence

eit(L-I-?Tw(V)—Jﬂ'w(V)J) — F%/(JF;J)eitL,
preserves the cor. It follows that
L+4m,(V) = Jr,(V)J,

is the standard Liouvillean af;.

Specializing even more, assume now thas a f-KMS state forr. It is then
natural to ask for &-KMS state for the perturbed dynamigs.

To gain some intuition on the problem let us consider firstfthite dimen-
sional case. Le©® = B(#) for some finite dimensional Hilbert spaéé and
(X) = e X e for some self-adjoint/. Then

w(X) =Tr (e’BHX)/Tr (6*5H) — Tr (efﬁH/2X675H/2)/Tr (efﬁH),

is the unique3-KMS state forr. The perturbed dynamicsg, as well as the per-
turbed KMS statevy, are obtained by replacing by H + V. Note that, in the
present situation, the definition (12) of the unitary coeyi¢| reads

Fﬁf — t(H+V) —itH
which is obviously an entire function of Thus, we can express, in terms ofw
as

w(XT¥) (B> X107

wy (X) = By iB)2xiB2\ (16)
w(Iy) w(Ty 7Ty

On the other hand, we have

T (DY), = my (TV2)e P12, = e PUtmeV2q,, (17)
by Equ. (15). Thus we can write Equ. (16) as

(Qwv 5 Ww(X)Qwv)
(Quv, Quv)

LUV(X) =
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whereQ,,. = e~ #L+V)/2Q . The cocycle property (14) further gives
Iy =TTt = TR (T,

andr—#8/(T%/*) = (1)~ Sincel'? is analytic and equald)~" for real
z, they are equal for al# and

D2 = o),
We can rewrite the perturbed vectoy,, as

Q... = Ww(Fixf/4)e’ﬁL/27rw(Fi‘f/4)*Qw _ Ww(ri‘f/zl)efﬁL/QJAl/?m(Ff”)ﬁw,

wy

and sinceJAY2 = Je=BL/2 = ¢fL/2 T we conclude that

Qpy = 7o (TN T, (TEMY IO, € P

wy

Thus(,,, is, up to normalization, the unique standard vector reptesige of the
perturbed KMS-state, .

The main difficulty in extending this formula to more genesdabation is to
show that?,, € D(e #(E+7(V))/2) Indeed, even i is bounded, the Liouvillean
L is usually unbounded below and ordinary perturbation thebguasi-bounded
semi-groups fails. I¥ is such that!(V') is entire analytic, this can be done using
(17) since the cocyclE?, is then analytic, as the solution of a linear differential
equation with analytic coefficients. It is possible to exteéhe result to general
bounded perturbations using an approximation argumene résult is usually
quoted as Araki’s perturbation theory BfM S states.

Theorem 2.2 Let (O, %) be aC*-dynamical system and € O a local pertur-
bation. There exists a bijective map— wy between the set g-KMS states for
7 and the set of-KMS states for- such thatvy € A, and (wy; )v, = wyq1vs-

Letw be ap-KMS state forr. Denote byl the standard Liouvillean of. For
any local perturbatior” one has:

1. Q, € D(e PEAm(V)/2),

2. Up to normalization§),, = e #(L+m(V))/2Q) 'is the vector representative of
wy inP.

3. Qy is cyclic and separating fot,,.
4. For anyrv € NV, one hasEnt(v|wy) = Ent(v|w) + v(V) — log ||Qv||%.
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2.4 Ideal Fermi gases

In these Lectures, | will be primarily concerned with opemrfi®n systems. The
reservoirsR, will be ideal Fermi gases (gases of independent electronisein
language of solid state physics). The small sys&eitself will be such an ideal
gas most of the time, except in the last Section where | wdbpnt some results
pertinent to the case where the Fermions are allowed tcaicttén the systens
only.

Leth be the Hilbert space of a single Fermion ahd ) be the anti-symmetric
Fock space ovelj and denote by*(f), a(f) the creation and annihilation oper-
ators for a single Fermion in the stafec h. These operators are bounded on
I'_(h)

la(A)I = lla* () =LA (18)

and satisfy the Canonical Anticommutation Relations (CAR)
{a(f),a*(9)} = (f,9)1, {a(f),alg)} = {a’(f),a"(9)} = 0.

The corresponding self-adjoint field operator

o(f) = —= (a(f) +a*(f)),
satisfies the anticommutation relation

{o(f),v(g)} = Re(f, )1

In the sequet? stands for eithes or a*.
The norm closure i8(I"_(h)) of the linear span of the set of monomials

a*(f1) - a” (fa),

is aC*-algebra: The CAR or Fermi algebra ovewhich we denote by’ AR ().
Let h denotes the Hamiltonian of a single Fermion. | will alwaysuase that
is bounded below. The second quantizatiér= dI'(h) of h generates a strongly
continuous unitary group
F(eith) _ eitH,
on the Fock spacE_(h). The induced group of-automorphisms oB(I'_(h))

Tt(A) = eitHA efitH,
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leaves the subalgeb@A R (h) invariant since
T'(a®(f)) = a* (" f).
Moreover, Equ. (18) gives
I8 (a® (f)) = a® ()]l = lle"" f = £,

from which one easily concludes that the restrictionrofo CAR(h) is strongly
continuous. Thus, the paiCAR(h), 7) is aC*-dynamical system.

Recall thatV = dI'(I) is the Fermion number operator &n (f). The previ-
ous argument also shows that

W (A) = N Ae TV,

defines a strongly continuous groupseautomorphims offAR(h). Clearly, the
gauge group) commutes with the dynamical group For anyu € R,

rt=rtog™H,

is the strongly continuous group efautomorphisms of2AR(h) induced by
K, = H — uN. A state onCAR(h) is called(g, 1)-KMS state if it is a3-KMS
state forr,. This state describes the free Fermi gas at thermal equitibin the
grand canonical ensemble with inverse temperatuesnd chemical potentigl
(recall Exercise 1).

To every self-adjoint operata@r onh such that) < 7" < I one can associate a
statewr on CAR(h) satisfying

wr(a*(fa)---a*(fr)a(g) - -algm)) = 5n,mdet{(gi, Tfj)}- (19)

This¥-invariant state is usually called the quasi-free gaugersiant state gen-
erated byr'. It is completely determined by its two point function

wr(a*(f)alg)) = (9, Tf).

Alternatively, quasi-free gauge-invariant states candsedbed by their action on
the field operators. For any integemwe defineP,, as the set of all permutations
mof {1,...,2n} such that

(25 —1) <7(2j), and 7(25—1)<n(25+1),
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for everyj € {1,...,n}. Denote bye(r) the signature ofr € P,. wr is the
unique state o€ AR (h) satisfying the Wick relations:

wr(p(h)e(f) = %(fl,fg—nm(fl,m

n

wr(o(fi) - o(fan)) = D e(m H P (fri1)@(fr2i);

TEPy :

wr(e(fi) - o(fong1)) = 0.

Note that ifA is a trace class operator gnthendI'(A) € CAR(h) and
[T (A) || = (Al
Moreover, for any quasifree statg one has
wr(dT'(A)) = Tr (T A). (20)

Using the defining relation (19) and the CAR, one easily shibzvt for any trace
class operatord, B onf, one also has

wr(dT(A)AT(B)) — wr(dT(A)wr(dT(B)) = T (TA(I — T)B).  (21)

If h = b, @ bhyandT = T1 & Ty, then forA € CAR(h;) andB € CAR(bh2)
one has
wr(A B) = wr, (4) wr, (B). (22)

wr is a factor state. It is modular ifler 7' = Ker (I — T') = {0}.
Two statesor, andwr, are quasi-equivalerhle.,Nle = Nsz, iff the opera-
tors
T2 -1)?  and (I-T)"?—(I-T)"7", (23)

are Hilbert-Schmidt; see [De, PoSt, Ri]. Assume tkat7; = Ker (I — T;) =
{0}. Then the states;, andwy, are unitarily equivalent iff (23) holds.

If T = F(h) for some functionF': sp(h) — [0, 1], thenw; describes a free
Fermi gas with energy densify(=).

The stateu is T-invariant iff 7 commutes withe!™” for all ¢. If the spectrum
of h is simple this means thdt = F'(h) for some functior#': sp(h) — [0, 1].

For any3, u € R, the Fermi-Dirac distributiong,(s) = (1 + ef=#)~!
induces the uniqué?, ;1)-KMS state onCAR (h), which we denote byg,,.
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The cyclic representation ¢fAR(h) associated tar can be explicitly com-
puted as follows. Fix a complex conjugatign— f onh and extend ittd"_(b).
Denote by} the vacuum vector and¥ the number operator ifi_(h). Set

Hor =T (h) @ T (b),
O, =Q®Q,

Tup(a(f)) = a((I = T)'2f) @ T + (=D @ a*(TV/?f).

The triple (H,,, 7wy, Quy) IS the GNS representation of the algelitaR(h)
associated tavyr. (This representation was constructed in [AW] and if often
called Araki-Wyss representation.) dfr is 7-invariant, the corresponding-
Liouvillean is

L=dl'(h) @I — I ® dT'(h).
If » has purely (absolutely) continuous spectrum so dgesxcept for the simple
eigenvalué) corresponding to the vect6y,,... On the other hand), becomes a de-
generate eigenvalue as soorhdgas some point spectrum. Thus the ergodic prop-
erties ofr-invariant, gauge-invariant quasi-free states can beritbestin terms of
the spectrum ok. If A has no eigenvalues the statg is ergodic

lim i/ V(7 (A)) dt = wr(A),

T—00 2T T

forall v € N,, andA € CAR(h). If h has purely absolutely continuous spec-
trum, thenwr is mixing

lim v(7'(A)) = wp(A).

[t| =00
If wr is modular, then its modular operator is described by
logA =dI'(s) ® I — I ® dT'(3),

wheres = log T(I—T)~"'. The corresponding modular conjugationi®@W¥) =
u¥ @ ud, whereu = (—I1)NWN+0/2,
Let # be thex-automorphism o AR (h) defined by

0(a(f)) = —a(f). (24)

A € CAR(b) is called even if(A) = A and odd iff(A) = —A. Every element
A € CAR(h) can be written in a unique way as a suim= A* + A~ whereA* =
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(A+60(A))/2is even/odd. The set of all even/odd elements is a vectopsichs
of CAR(h) andCAR(h) is a direct sum of these two subspaces. It follows from
(19) thatwy(A) = 0 if A is odd. Therefore one has-(A4) = wr(A™) and

wr O 0= wr. (25)

The subspace of even elements §"asubalgebra o€ AR (). This subalge-
brais called even CAR algebra and is denotedByR * (h). Itis the norm closure
of the linear span of even monomials

a*(f1) - a* (fan).

The even CAR algebra plays an important role in physics. it geserved by
andd and the paifCAR™ (h), 7) is aC*-dynamical system.

We denote the restriction af; to CAR*(h) by the same letter. In particular,
wg,, is the unique 3, 11)-KMS state onCAR™ (b).

Let

A=a?(fi)---a*(fa),  B=a"(q)--a*(gm),
be two elements ocf AR(h), wherem is even It follows from CAR that

1A, 7 (B)]I| < CZ |(fis €™ g5)l,

where one can tak€' = (max(|| fi||, |lg;||))*™ 2. If the functions|(f;, e g;)|
belong toL' (R, dt), then

/Oo 1A, #(B)]|| dt < oo. (26)

o0

Let h, C h be a subspace such that for afiy) € b, the functiont — (f,el"g)
is integrable. LeD, = {a®(f1)---a®(fn)|n € N, f; € ho} and letO] be the
even subalgebra @?,. Then forA € Oy, andB € Of (26) holds. Ifh, is dense
in b, thenO, is dense iICAR(h) andO is dense inCAR™ (b).

3 Entropy production

3.1 Relative entropy

Letw be a modular state on tli&*-algebra® and(#.,, 7., €2,,) the induced cyclic
representation.
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To any stater € N, we associate its unique vector representdbiye P. We
denote by, the orthogonal projection on the closed subspadé ofjenerated by
M’ . On the dense subspa®®@,Q, & (M, )+ the formula

AQ, @ D +— 5, A%,

defines an anti-linear operatét, ,. Denoting bys!, the orthogonal projection
on the closed subspace generatedBy(2,, one easily checks that the dense
subspacé; 2, @ (M, ) belongs to the domain of the adjoifi} , and that

Sy, (BQ, @ V) = s5,B*Q,.
ThussS,,, is closable. The positive self-adjoint operator
Aw,u = S:)ﬂ/gw,m

is called relative modular operator.

The relative entropy of two states v € F(O) has been defined by Araki in
[Arl, Ar2]. We shall however use the notation of [BR, Don] (e departs from
Araki’s one by the order of the arguments and the sign) and set

(2,,log A, , Q) ifveN,
—00 otherwise.

Ent(v|w) = {

It follows from the inequalitylogz < = — 1 and the fact that2,, A, ,,) =
15,9, 112 < 1, that
Ent(v|w) < 0.

Remark. The above construction is easily adapted to the case whésenot
modular. One has then to use a standard representation eheéopping von
Neumann algebriit,,. In our applications howevey will always be modular.

To motivate this definition, let us consider the special s quantum sys-
tem with a finite dimensional Hilbert spaéé. The C*-algebra of observables is
the full matrix algebra® = B(#) and the state space is

EO)={weBH)|w=>0Trw=1}.

To construct the cyclic representation associated withstheew let us set
K = Ranw = (Kerw)* and consideB(K, ) as a Hilbert space equiped with
the inner productX,Y) = Tr (X*Y). We set

H, = B(K,H), T (A)X = AX, Q. = w'?i,
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wherei denotes the canonical injectidh— 7. One easily checks that,(0)Q,, =
‘H.,. Moreover, one has

(o, T (A)Q,) = Tr (i*w 2 Aw/?i) = Tr (W %i5* w2 A) = Tr (wA).

Thus(H,, 7, ) is the cyclic representation @ associated ta.

Sincer, (A)Q, = Aw'/?i = 0if K C Ker A, the states is modular if and only
if £ = H, thatisifw > 0. Note incidently that a Gibbs state= e=## /Tr (e =#H)
is always modular.

From now on we assume that > 0, and thus#,, = B(#). Sincer, is
injective, the envelopping von Neumann algefifia = 7,,(0O) is isomorphic to
O. Let us determine the modular structure associated By definition we have

(70 (A)Qy, A, (B)Sy,) = (S7,(A)Qy, STy, (B)S2,),

thatis

(Aw'? ABw'?) = (A*wl/2, B*wl/?).
Writing X = Bw'/? andY = A X, we obtain

Tr (w'2A*Y) = Tr (W2 Aw 12X *w1/2) = Tr (w2 A*wXw™),

from which we conclude that = AX = wXw L. It follows that A'/2X =
w'2Xw 12 and hence

JX = SAT2X = Sw™2X W% = (w2X)* W'/ = X,
It is now easy to compute the natural cone
P = {1, (A)Jr,(A)Q, = Aw?A* | A € O} = {X € B(H)|X > 0}.
We note also that the commuteiit, is given by
m, = JMm,J = Jn,(0)J =7,(0),

where
7 (A) = Jr,(A)J : X — X A"

w

In particular the centelt,, N M, is trivial and thereforev is a factor state.
If v is another density matrix, its vector representativé/inis justv'/?. De-
note byp, the orhogonal projection on its range. One has

M Q, = {v2A|Ac B(H)} = {X € B(H) |Ran X C Ranv} = p,B(H),
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from which we conclude that, = 7, (p,). Similarly
M, Q, = {Av'?| A € B(H)} = {X € B(H) |Kerv C Ker X} = B(H)p,,

ands,, = m,(p,). From the definition of the relative modular operator we @pt,
A,B e Oand®, ¥ e (M, Q)" =BH)(I —p,),

(mu(A)Q, ® @, A, (7,(B)Q, ®V)) = (5,m,(A)* U, 5,7.(B)*Q),
thatis, withX = 7,(B)Q, ® ¥ = BvY/2 + ¥(I — p,) andY = A, X,

Tr((Av'? @ ®)'Y) = Tr(
Tr ((V'2A" + (I —p,)®")Y) = Tr(w
= Tr(vY24*wBv?p,)
(v
(

=
<
o
*
&
—
~
[N}
3
S
S
sy
*
&
—
~
=

= Tr(v'?4*wXv'p,)
= Tr (1/1/214* + (I —p,)®")wXv'p,),

from which we conclude that
Ay, X = waflp,,.

Using the spectral decompositionwfandr, it now easy to compute the relative
entropy

Ent(vjw) = (,,log Ay, ) = Tr (v(logw — logv)) .
This expression is the natural extension of the relativeopgtof two probability
measures

d
Ent(v|w) = — /logé dv.

3.2 Entropy balance equation

Letw € E(O) be a modular staté#,,, ., €2,) the assocaited cyclic representa-
tion andc, the modular group of. We denote by, the generator of!, and by
D(4,,) its domain.

For unitaryU € O andn € E(O), we denote byy; the staten;(A) =
n(U*AU).

Theorem 3.1 For any unitaryU € O N D(4,,) and anyn € E(O),
Ent(ny|w) = Ent(n]w) — in(U*6,(U)). 27)
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Let ¢ be aC*-dynamics on® and assume that thatis 7-invariant. One easily
checks that for any € R the statev is KMS for 6!, = 77 0 ! o 7%. It follows
from Theorem 2.1 that! = ¢! i.e.,that the two groups ando,, commute.

LetV be alocal perturbation, that is a self-adjoint elemert®ofl he perturbed
time evolution is the strongly continuous family efautomorphisms o given
by the formula

A = ()
+ Z ln/0 dt1/0 dtQ . /0 dtn [Ttn(v)a [ T [Ttl (V)v Tt(A)]”

n>1
In the interaction representatiory; is given by
m(4) = Ty (A)TY,
wherel, € O is a family of unitaries satisfying the differential equoati
iF"/ =it (V) Y =1.
dt 14 \4 ) \4
If Ve D(d,), thenl, € D(4,) and

CrLau(TY) = —irh(0,(V)) (28)

Hence, Theorem 3.1 has the following immediate corollary

Corollary 3.2 Assume thab is 7-invariant and thatl” € D(4,,). Then, for any
n € E(0),

Ent(n o {lw) = Ent(n|w) — / 0o (6,(V)) (29)

Motivated by the entropy balance equation (29), we shallthalobservable
oy = 5W(V),

entropy production rate of the local perturbatignw.r.t. the reference state.

Note thatoy not only depends on the perturbatidn but also on the reference
statew. We will see in our applications that whenevuehas some internal struc-
ture (roughly speaking ib is a product of KMS states), then- can be related to



Open Quantum Systems 25

the fluxes of extensive quantities like energy or chargessacthe various com-
ponents of the system.

Our definition of entropy production is motivated by clagsitynamics where
the rate of change of thermodynamic (Clausius) entropy careimes be related
to the phase space contraction rate [Ga2, RC]. The lattedased to the Gibbs
entropy (as shown for example in [Ru3]) which is nothing disié the relative
entropy with respect to theatural reference statgrovided by Lebesgue measure;
see [JPR1] for a detailed discussion in a more general coniigws, it seems
reasonable to define the entropy production as the rate oigehaf the relative
entropy with respect to the reference staté/ithin this analogy, the observable
oy plays the role of the phase space contraction rate.

Proof of Theorem 3.1 LetOMt, = 7, (O)” be the enveloping von Neumann alge-
bra. Sincev is a KMS state, the vectdp,, is separating fof)t,, and we denote
by P, J, A the corresponding natural cone, modular conjugation andufao
operator. We further set

L =logA,

and recall that

To(0h (A)) = e Fm, (A)e 1, Lo, =0.

w

Any staten € N, has a unique normal extension 28, which we denote
by the same letter. Obviously,is w-normal iff n;; is w-normal for all unitaries
U € O and so, in the proof of Theorem 3.1, we may restrict oursetvesnormal

n's.
We will use the fact that ify : 91, — 901, is ax-automorphism, then
Ent(n o y|w o) = Ent(n|w).

In particular,
Ent(ny|w) = Ent(n|wy-).

Let U;- be the unique vector representative of the state in the coneP. A
simple computation shows that

Uy = m,(U*) Iy (U*) Q.

We will considerP = r,(—iU*0,(U)) as a local perturbation of the modular
groupc’,. Leta! be the locally perturbetd’*-dynamics,

O[t(A) = eit(LJrP)Aefit(lA»P) — @tPO.L(A)@%a
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wheree "+t = @1, ¢ 9, is a family of unitaries satisfying

d
&@; = i0Lo! (P), 0% = 1. (30)

By the Araki perturbation theor,, € D(e(**")/2) and the vector

e(LP)/2()

U= [e@+P)2Q ||

belongs to the natural corfeé and defines a state which is KMS fora.
Another fundamental result of Araki’s theory is the relatio

Ent(n|¢)) = Ent(n|w) + n(P) — log [|e P20, |2, (31)

which holds for allv-normal stateg. (Forn faithful, this relation was proven in
[Arl, Ar2], see also [BR]. Its extension to generalvas obtained by Donald in
[Don]. Hence, to finish the proof it suffices to show thét ?)/2Q,, = Ty-..

We setl" = U*o!,(U) and observe that

d
ETt =iT'c! (—iU*0,(U)), T° =1.

Comparison with Equ. (30) immediately leadstg7") = ©%, and therefore
eit(LJrP)Qw =7, (Tt)eitLQw
. (32)
= 7, (U*)eTm, (U)Q,,.

Since the vector-valued function — e*(«+P)Q)  is analytic inside the strip
—1/2 < Im z < 0 and strongly continuous on its closure, analytic contiiunedf
the identity (32) toz: = —i/2, yields

eEFP2Q = 7, (U AY 27, (U)Q,
= 7, (U") I, (U*)Qy,
= \IIU*a

which is the desired relatidn.
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4  Non-Equilibrium Steady States

4.1 Definition

Our definition of Non-Equilibrium Steady States (NESS)dult closely the idea
of Ruelle that a “natural” steady state should provide tlaistics, over large
time intervalg|0, ¢], of initial configurations of the system which are typicathvi
respect to the reference state [Ru3].

Let (O, ) be aC*-dynamical system ang a given initial state. The NESS
associated tp andr are the weak- limit points of the time averages along the
trajectoryp o 7t. In other words, if

1 t
=7 [ pords (33)
0

thenp, is a NESS associated poandr if there exists a sequeneg 1 oo such
that (p);, (A) — p.(A) forall A € O. We denote by, (p, 7) the set of such
NESS. One easily sees that (p, 7) C F(O, 7). Moreover, since?(O) is weak-
* compactX.  (p, 7) is non-empty.

Remark. There is a fair amount of arbitrariness in the above definitibhe er-
godic mean in Equ. (33) can be replaced by another averagimggure. Without
further assumptions on the ergodic properties of the systieeresulting set of
NESS will generally not coincide witll, (p, 7). However, most results in this
section are either independent of our specific choice ofaieg, or can be easily
adapted to other averagings.

In these notes, we will consider NESS of locally perturbedadygical systems
which occur naturaly in the study of open systems. (i&tr) be aC*-dynamical
system and> a modularr-invariant reference state. We denoterbythe dynamics
induced by a local perturbation € O0. We shall always assume that our initial
states are normal w.r.t. the reference stateThus, letp € N, and consider a
NESSp, € X, (p, 7). We define the entropy production ratecaf by

Ep(p4) = p+(ov).
Lett, — oo be a sequence such tha),, — p.(A). According to the entropy
balance equation (29)

Ep(p) =~ lim - (Ent(p o 2 [«) — Ent(w)). (34)

n
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SinceEnt(p o 7, |w) < 0, an immediate consequence of this equation is that, for
p+ € Xi(p,v),
Ep(p+) > 0. (35)

4.2 Structural properties

In this subsection we shall discuss structural properfi®&&SS and entropy pro-
duction. Proofs can be found in [AJPP].

First, we will discuss the dependenceof (p, 7v/) on the initial statep. On
physical grounds, one may expect that if the reference stetesufficiently regu-
lar, thenX, (p, 1) = ¥ (w, 1) for any initial statep € AV,

Theorem 4.1 Assume that is a factor state on thé*-algebra© and that, for
all pe N,andA, B € O,

lim = / o[ (4), B]) dt =0,

T—oo T

holds (weak asymptotic abelianness in mean). Thetp, v) = ¥, (w, 1) for
all p e N,.

The second structural property we would like to mention is:

Theorem 4.2 Let
rho be aw-normalry-invariant state. Thep(oy) = 0. In particular, the entropy
production of thev-normal part of any NESS is equal to zero.

If Ent(plw) > —oo, then Theorem 4.2 is an immediate consequence of the
entropy balance equation (34). The cad&e(p|w) = —oo has been treated in
[JP7] and the proof requires the full machinery of Araki'stpebation theory.

If w, is a factor state, then either, < w orw, 1 w. Hence, Theorem 4.2
yields:

Corollary 4.3 If w, is a factor state andip(w.) > 0, thenw, | w. If wis also
a factor state, then, andw are disjoint.

Certain structural properties can be characterized indernthe standard Li-
ouvillean. LetL be the standard Liouvillean associatedrt@and L, = L +
7,(V) — Jr,(V).J the standard Liouvillean associatedria
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Theorem 4.4 Assume that is modular.
1. Under the assumptions of Theorem 4.1K#r Ly, # {0}, then it is one-
dimensional and there exists a unique normakinvariant statew, such that

i (w, mv) = {wv}.

2.1f Ker Ly, = {0}, then any NESS iR, (w, 7v/) is purely singular.
3. If Ker Ly contains a separating vector fowt,, then¥  (w, 7)) contains a
unique statev, and this state is,--normal.

5 Open Systems
5.1 Setup

We consider an open system where a small sysfeimteracts with)M reser-
VOIrSRy,...,Ry. The combined systeil§ + R, + - -- + Ry, is described by

a C*-algebra®. To each subsysteii, R,,...,R)s corresponds a subalgebra
Os,0x,,...,Ox,, of O. Subalgebras corresponding to distinct subsystems may
not commute. However, we will assume tiat N O, = CI for a # b. If A,

1 < k < N, are subsets of), we denote by(A,---, Ay) the minimalC*-
subalgebra oD that contains all4,. Without loss of generality, we may assume
that® = <05, ORU s ;ORM>-

The dynamics of the joint butecoupledsystem is given by a groug = e?
which preserves each subalgebt3s We denote the restriction efto O, by 7,
and its generator by,. The reference state is such that its restrictions, =
w|0O, arer,-invariant.

The subsystens$ is coupled to the reservoiR; through gunctiondescribed
by a self-adjoint perturbatiol; € (Os, Or;). The complete interaction, given

by
V=>"V, (36)

is a local perturbation and thederivationdy = ¢ +i[V, - | generates the coupled
dynamicsr{. on O. Thecoupledjoint system is described by th&*-dynamical
system(O, /) and the reference state

The subsystem structure ¢t can be chosen in a number of different ways
and the choice ultimately depends on the class of examplesvishes to de-
scribe. One obvious choice is the following: the small sysig described by the
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C*-dynamical systeniOgs, 7s) with reference states and thej-th reservoir by
(Og,, ;) andwz;. We then set

O = OS®0R1®®O’RM7

T

TS QTR &+ @ TRy,
Ww = Ws®WwWr, O QuWr,,-

In view of the examples we plan to cover, we are forced to atlevmore general
structure describd above.

Figure 2: Junction¥, V5 between the syste and two reservoirs.

An anti-linear, involutivex-automorphism: O — O is called @ime reversal
. . . - t _ —t t _ —t ] — ] . .
if it satisfiesto 7g = 75" o v, vo 7 = 7 o vande(V;) = V;. If vis atime
reversal, then

tor! =7""or, tOT‘t/:T‘;tOt.

An open quantum system described(ld}, 7-) and the reference stateis called
time reversal invariant (TRI) if there exists a time revérssuch thatw o vt = w.

5.2 The scattering approach

Let (O, 7) be aC*-dynamical system and a local perturbation. The abstract-
scattering approach to the study of NESS is based on theviolipassumption:
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Assumption (S) The strong limit

+ — 1 —t
apy =s—lim T

t—o00

) 7'{5/,
exists.

The mapny- is an isometri-endomorphism o®, and is often called Maller
morphism.«;; is one-to-one but it is generally not onto, namely

O, =Ranaj # 0.

Sinceay: o T, = 7t o i, the pair(O, 7) is aC*-dynamical system and; is an
isomorphism between the dynamical systéfisry) and(O,, 7).

If the reference state is 7-invariant, thenv, = w o o’ is the unique NESS
associated to andry, and

lim wo 7. (4) = w. (4),

forany A € O. Note in particular that ifv is a (7, §)-KMS state, thenv, is a
(1v, B)-KMS state.

The mapq;; is the algebraic analog of the wave operator in Hilbert space
scattering theory. A simple and useful result in Hilbertegpacattering theory is
the Cook criterion for the existence of the wave operateralgebraic analog is:

Proposition 5.1 1.Assume that there exists a dense subket O such that for
all A e Oy,

|l < . @)
0
Then Assumptio(8) holds.
Proof. For all A € O we have
to
T o (A) — T M o (A) =i / TV (A)a (38)
t1
and so .
77 o 72 (A) — 77 o T (A)] < / [V, 7 (A)]]| dt, (39)
t1

Note that (37) and (39) imply that fot € O, the norm limit

o (A) = tllglo 7o (A),
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exists. Sinc&), is dense and~! o 7{, is isometric, the limit exists for alit € O,
anda;; is ax-morphism ofO. [

Until the end of this subsection we will assume that the Agstion (S) holds
and thatw is 7-invariant.

Let o = w|O, and let(H;, 5, 2z) be the GNS-representation 6f, as-
sociated tow. Obviously, if o7 is an automorphism, thea = w. We de-
note by(H., , T, , 2, ) the GNS representation ¢! associated ta,. Let L
and L, be the standard Liouvilleans associated, respectivelydta 7, ) and
(O, 7v,w, ). Recall thatl.; is the unique self-adjoint operator @fy, such that for
Ae Oy,

Lz =0, To(TH(A)) = e omy (A)e s
and similarly forL,, .

Proposition 5.2 The map
U (ai-(A)) Qs = 7, (A)Q

W4

extends to a unitary/ : H, — H,,, which intertwines.; andL,,_, i.e.,

ULy = L, U.

Proof. Setr.(A) = m;(af-(A4)) and note that, (0)Q; = m5(0,)Qs, so that
Q) is cyclic for 7, (O). Since

w(A) = w(o(4)) = (af(4)) = (L, 15 (0 (4))) = (s, 75(A4)2s),

(Ha, 75, Q) is also a GNS representation 6f associated tas,. Since GNS
representations associated to the same state are unggtlyalent, there is a
unitaryU : Hy — H,,, such thatU§2; = €, and

Unl(A) = m,, (A)U.
Finally, the identities
Uetanl (A)Q = Ung(1'(a5(4)))Q0 = Ung (o (11:(4))) Qs

= T, (T (A)Qy, = " orm, (4)Q

wi w4

= eher Unl (A)Q,
yield thatU intertwinesL; and L,,+. O
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Proposition 5.3 1. Assume thab € E(O,, 1) is r-ergodic. Ther:, (n, rv) =
{w, } forall n € N,.
2. If & is 7-mixing, thenim; ,,, no 7, = w, foralln € N,,.

Proof. We will prove the Part 1; the proof of the Part 2 is similam IE A, then
n | O, € N3, and the ergodicity of yields

fim = [ 0 ()t = Gl (4) = w1 (4)

T—00

This fact, the estimate
In(7i-(A4)) = n(r" (ay.(A))]| < [I77" o 7 (4) — o (A)]],
and Assumption (S) yield the statemelnt.

As in the Hilbert-space scattering theory, the range of thaléd morphism

oy is related to the domain of the inverse morphism
B;} =gs—lim T‘;t ot
t—o00

Since in the applications we have in mind the small systenitheea finite or a
confined quantum system its decoupled dynamicwiill typically be quasiperi-
odic. Thus we can't expect the above limit to exists@g and therefore the
Mgller morphisma;; will not be onto (except in trivial cases). The best one may
hope foristha®, = Ox = (Og,, ..., Og,,), namely that]> is an isomorphism
between th&€'*-dynamical system&), /) and(Ox, 7)) Whererr = 7|Ox. The
next theorem was proved in [Rul].

Theorem 5.4 Suppose that Assumption (S) holds.
1. If there exists a dense s€%z, C Oz such that for allA € O,

[ vl < . (40)
0
thenOx C O,.
2. If there exists a dense s&, C O such that for allX € Og and A € O,,
. t _
Jim (| (A =0, (41)
thenO, C Ox.

3. If both (40) and (41) hold then’ is an isomorphism between thé-dynamical
systemgO, /) and (Ox, mr). In particular, if wr is a (tr, 5)-KMS for some
inverse temperaturg, thenw, is a(7v, 5)-KMS state.
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Proof. The proof of Part 1 is similar to the proof of Proposition 5The assump-
tion (40) ensures that the limits

5E(4) = Jim 7t 71(4),

exist for allA € Ox. Clearly,a;: o 8:(A) = Aforall A € Or and soOx C
Ran aj.

To prove Part 2 recall thaDs is a N2-dimensional matrix algebra. It has a
basis{E, |k = 1,---,N?} such that'(E}) = e’ E, for somef), € R. From

Assumption (S) and (41) we can conclude that

0= lim ¢! ([By, (4) = lim [By, 7" o 7(A)] = [Bp, o (A)],
forall A € Oy and hence, by continuity, for all € O. It follows thatRan o be-
longs to the commutant @ in O. SinceO can be seen as the algelra; (Ox)
of N x N-matrices with entries iidr, one easily checks that this commutant is
preciselyOz.

Part 3 is a direct consequence of the first two parits.

6 The EBB model

We now introduce a fairly general model of mesoscopic dega@amonly used
in quantum electronics. We will establish various well kmofermulas for the
heat and electric currents, entropy production and tramsefficients. Even
though the mathematical analysis of our model is ratheigtti@rward and relies
entirely on very well known material, rigorous proofs of ske€ormulas can not,
to the best of our knowledge, be found in the literature.

The system consists 8f extendealectronic reservoirg, - - - R, connected
to aconfineddeviceS through junctions?; - - - Jy,. Apart from Pauli’s principle,
electron-electron interactions are neglected, or moreigely treated in a mean
field approximation.

Each reservoiR, is described by the one-electron Hilbert spggevith one-
electron Hamiltonia,. We denote byyr = ®,h, andhr = @,.h, the complete,
one-electron, reservoir hilbert space and Hamiltoniare dévicesS is similarly
described byys andhs. We seth = hr ® hs andhy = hr ® hs. We further
denote byj’: b, — b, a = 1,--- , M, R,S the canonical imbeddings and by
1, = j!j. the corresponding orthogonal projections.
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Assumption (S1)Eachh, is bounded below and has purely abso-
lutely continuous spectrumhs is bounded below and its resolvent
belongs to the trace ide&F (hs) for somep > 1.

We will denote bya a positive constant such thia¢ + a and eachh;, + a are
strictly positive.

To each junction7,, we associate a hilbert spa&g and two coupling oper-
atorsry: by — K ands,: hs — K. The coupling of the system with theth
reservoir is given by

Uk = J5SkTkIk T JETESESS) (42)
and the coupled one-electron Hamiltonian is

hzh0+v5h0+2vk.
k

Assumption (C) The operators; (h;+a) ands, belong to the Hilbert-
Schmidt class. Moreovery (hy, + a)P~"/2 ands(hs + a)®?~/? are
bounded.

The corresponding many-electrons system is describedebffe¢imi algebra
O = CAR(h) and the two groups of Bogoliubov automorphissjsand 7* in-
duced by the one-electron Hamiltonidnsandh. We shall denote b, , Oz, Os
thex-subalgebras aP corresponding to subsystems, andbyrk, 75 the restric-
tions of 7} to these algebras.

Note that, under Assumption (C), eaghis trace class. Sing#" is a bounded
map fromL! (h) into O (see [Araki-Wyss])V;. = dT'(v;) is a self-adjoint element
of (Os, Og,). Clearly, 7 is the local perturbation of, by V' = " 1V}, and its
generatob is related to the generatéy of 7, by 6 = &y + [V, -].

Assumption (R1) The reference state isrg-invariant, gauge invari-
ant quasi-free state generated by" = T ® T's where

TR = @ pk(hk)a

for some measurable functiops: sp(hy) —|0, 1] satisfying

sup  App(A) < 0.
Aésp(hy,)

As we shall see below, the choice B is irrelevant for the purpose of com-
puting the NESS. It does however affect the entropy prodaabbservabler, .
We will denote bywr the restriction ofv to Ox.
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6.1 Heat and Electric Currents. Conservation Laws

Strictly speaking, the total charge and the total energyhefdeviceS are not
observables ifs is infinite dimensional. However, if we denote by Ry an
eigenbasis ofs and bye,, the corresponding eigenvalues, the (possibly infinite)
guantities

Qs(n)

Zu(a
Es(p) = Z gj p(a” (xz)alx;))-

are well defined for any. € E(O). Recall that, to such am, one can associate a
two-point operatofl}, by the formulau(a*(g)a(f)) = (f,T,.g9). By linearity and
continuity, this formula extends to(dl’(¢)) = Tr (T}, q) for anyq € L£'(). In
terms of7),, the above definitions can be rewritten as

QS(M) = Tr hs(lSTlLlS):
Es(p) = Trys(ls(hs +a)*T,(hs +a)'?1s) — aQs(p),

from which the following Lemma follows easily.

Lemma 6.1 Lety be a state and denote [y, its two-point operator. There exists
a constant’, depending only oh, andw, such that

Cll(ho + )T, |,
Cll(ho + a)?*V2T,/2| 2.

Moreover, for anyu, € ¥, (i, 7) one has

Qs(py) < limsupQs(pot'),

t—+o00

Es(py) < limsup Eg(uoth),

o t—+o00

Note in particular that ifp,(\) = (1 + e®+C—#))~1 with 8, > 0 andh’%t' T
is bounded, the®s(w o 7*) and Es(w o 7*) are uniformly bounded in time. Con-
sequenthyQs(w, ) andEs(w, ) are finite for anyw, € ¥, (w, 7).
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In the one-electron picture, the energy of the reserqiis given by
hk(t) _ eithhke_ith,

from which we conclude that the heat current flowing from tieservoir into the
deviceS is
oy (1) = —hi(t) = elhpieith

with the one-electron heat current
oV = —i[h, by = i[hg, v] = ilhg, vi) = i[hr, Vi) (43)
The heat current in the many-electrons model is therefarengoy
By = dr(p)) = i[dT (hy), V] = 6 (V).

Electric currents are obtained in a similar way, substigithe energy:;, with
the orthogonal projectioh,. Thus the one-electron electric current is

QOI(CO) = —ilh, 1i) = i[1g, v] = i[lg, vi] = i[1r, ve], (44)
and its many-electron counterpart is

0¥ = dr(p") = i[dI (1), V] = 8 (V),

whered,, is the generator of the gauge groupof.
Energy and charge conservation holds in the following geetorm.

Lemma 6.2 If Qs(po ") < oo for t in some open interval, it is differentiable
there and its derivative is given by

Qs(not) =Y por(®).
k
In particular, if 1« is an invariant state such th&s(u) < oo, then

> u@) =o.

A similar statement holds for the energy.
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Proof. One has an absolutely convergent series
s(or) Z ot

where each terng;(t) = (e'"y;, T,ey;) is continuously differentiable since
x; € D(h). An explicit calculation shows that (1) = 2Im (x;, v Tortx;) from
which one easily obtains the estimate

ngp (D1 <2 lirsllz llsele-
j k

This allows us to conclude that

0Qs(po") qu (Tport i[v, 15]).

Finaly, sinceifv, 1s] = i[lg,v] = >, i[lk,v] =D, go,(co), the result follows[

6.2 Entropy Production

To compute the entropy production we need a modular referstatew. Thus,
we strengthen Assumption (R1) by the following requirersent

Assumption (R2)Ts = (1 + e %)~ ! where&s is a self-adjoint op-
erator commuting witth s, bounded above, with resolvent in a trace
ideal £L(hs) for someg > 1. Moreover, there existg > 1 such that

Soill(a = &s)Pstll2 < oo

We sett).(\) = log pr(A) —log(1—pi(N)). The reference stateis 7, invariant
and modular. Its modular dynamics is the group of Bogoliuaatomorphisms
associated with the Hamiltonian

£= <@fk(hk)> D &s-

Hence, the entropy production observable is

oy = 0,(V) = dI(i[¢ Zdr (€ (he), v]) + AT (i[Es, v]).

The last expression clearly displays the dependence amnproduction on the
choice of the reference statge. However, one has
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Lemma 6.3 Under Assumptions (R1), (R2),

n(ov) =Y n(dU(il&(h), vil),

for anyr-invariant statey. In particular, if p, (\) = (1 + e®A—4))=1 then,

n(ov) == Ben(@) — (@)

Proof. Without loss of generality, we may assume that< 0 and that(—¢s) ¢
is trace class. We first note thatfifis a trace class operator commuting wiih
one hag[dI'(k), V] = dI'(i[k, v]) = —dT'(i[h, k]) = —0(dT'(k)) and hence

n(i[dI'(k), V]) =0,
for all 7-invariant stateg. In particular, since

£ &s
S 1 —|—€(—£3)q+1,

is trace class fot > 0, one has
(AT (&), V)] < I|[€s — €57, 0]

Writing

e(—&s)Tt! ) I—a (—E&g)'HetatD)
(

e a
S R Cer= o) B e

with 0 < a < 1 leads to the estimate

ks — kS, vllle < 2¢* > |Irallall(—€s) @ Vs |,
k

which, for sufficiently smalk, allows to concludé&l
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6.3 NESS

Let us denote by,.(h) the orthogonal projection on the subspacg obérrespond-
ing to the absolutely continuous spectrumhofUnder Hypotheses (S1) and (C),
it follows from the Kato-Rosenblum trace class scatterhmpty that the Mgller
operators

wy = s — lim ehe~ho]
t—+oo

exist and are compleiee.,w.. are unitary operators frofi ontoRan 1,.(h). In
particular, the inverse Mgller operators are given by

wh =s — lim e™0e "1, (h),
t—=o00

with wiwy = 1z andwiw? = 1,.(h). Let us make the following Hypothesis
Assumption (S2)h has purely absolutely continuous spectrum.

Then, for elements of the form

A=a¥ () a® (), (45)
of O one has
7ol (A) = af (e ety ot (e oeity, ).
and therefore
lim 7 7' (4) = a# (w" ) - a* (" ).

Since the linear span of the set of elements of the form (48grse inO, we
derive that the limit
at = lim ;"o 7,
t—00

exists in the strong topology afl. Hence,

wy=woa,

is the unique NESS associatedutoand 7. From (19) it is clear that, is the
gauge-invariant quasi-free state generated by

T, =w Trw".

SinceRan w* = hg, one haRana™ = Og, andw, = wr o a™. The mapa™
is an isomorphism of *-dynamical systems betweé®, 7) and(Ox, 7% ). Since
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it follows from Assumptions (S1) and (R1) thak is 7 mixing (see Subection
2.4), Proposition 5.3 allows to conclude that

lim no 7! =wy,
t— 00

for anyn € N,,. We thus have shown

Theorem 6.4 Under Assumptions (S1), (S2), (R1), and (E),(n, 7) does not
depend of the choice of the initial stajec A/,. It contains a unique NESS,
which is the gauge-invariant, quasi-free state@menerated by

T, =w_Trw’.

Moreover, for anyy € A, one has

lim no7! = w,.
t—00

In particular, for anyq € £'(b),
wi(dl(q)) = Try, (Trw” qw_).

If w is such that?*' T is bounded, then
ZW‘F((I)E;!)) =0,
k

fori =0,1.

If all the energy densities; (<) are the same and equalA(x), then one has

Sinceh, — hg is a finite rank operator, one easily verifies that the opesato
(THY?—=TY?2 and (1 -T Y2 - (1 -T2

are Hilbert-Schmidt. The Powers-Stormer theorem yieldsith , < w and the
model has trivial thermodynamics in the sense that its pgitppoduction is equal
to zero.

These observations require a comment. By the general plasodf statistical
mechanics, one may expect thgi(w, ) = 0 iff all the resevoirs are in thermal
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equilibrium at the same inverse temperataré his is not the case in EBB model
since the perturbations; are chosen in a very special way. One can show that
the Planck law can be deduced from the stability requirerieiiv, ) = 0 for a
slightly more general class of interactiovis

We remark that our last Assumption (S2) is quite strong. Imig@alar, it will
fail (even at small coupling) if spectral g&p\ U,.sp(hy) of the reservoirs contains
some eigenvalues dfs. On the other hand, (S2) can not be avoided since the
presence of point spectrum bfgenerates a quasi-periodic component in the time
evolutionT which prevents the convergencempé 7t. In this case, one is forced
to use time-averaging to reach a steady state. As the falprasult shows, point
spectrum does not affect the steady currents.

Theorem 6.5 Assume besides (S1), (R1) and (C) thdtas empty singular con-
tinuous spectrum. Then there is a unique NESS$ X, (w, 7). Moreover,

wi (B = Tr g (Tr w* o w_). (46)

The last statement of Theorem 6.4 remains valid.

Remark. As we shall see in the next section, Equ. (46) is an abstract & the
Buttiker-Landauer formula.

Proof. Denote byl,. and1,, the spectral projections &fon the absolutely con-
tinuous and pure point spectral subspaces. We start wittwibigpoint functions.
For f, g € h we have

w(r!(a*(g)al(f))) = (™ f, Tel"g) =Y " Nj(e™ f el g),

i=1

where
Nl (fa g) = (1acfa Tlacg):

No(f,g9) = 2Re(lppf,T1acg),
Ns(f,g9) = (lppfaTlppg)-

Sincee T = Te 1o we have

Nl (eithf, 6ithg) — (e*ithoeith 1acf; Tefitho eith 1acg);
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and so _ _
tlim Ny (e f,ethg) = (w* f, Tw*g).
—00

Since} is separable, there exists a sequeRgef finite rank projections commut-
ing with » such that — lim P, = 1,,,. The Riemann-Lebesgue lemma yields that
forall n

lim ||P,Te"1,.9] = 0.

t—o00

The relation
N2 (eithf, eithg) _ (eithlppf, PnTeithlacg) + (eith (I . Pn)lppf; Teithlacg),

yields that _ _
tlim Ny(e™™ £ eithg) = 0.
— 00

SinceN; (el f, elh g) is either a periodic or a quasi-periodic functiontdf does
not have a limit ag — oo. However, one easily shows that

1 [t . :
lim — [ Ns(e®"f e*"g)ds = Z (P.f,TP.g),

t—oo t 0
e€spyp(h)
where P, denotes the spectral projection bfassociated with the eigenvalae
Hence,

fim 2 [ (@ @a()ds = Y (PATPg)+ (' £ Tutg). @7

t—oo t 0
e€spyp(h)

In a similar way one concludes that for any observable of dine f

A= a*(gn)"'a*(gl)a(fl)"'a(fm)a (48)
the limit
1 1 A
thm — | w(r®(A))ds = dpm thm p det{(e"" f;, Te*"g;)} ds
—00 0 —00 0

exists and is equal to the limit

1 [t . )
lim — [ det {(e""1,,f;, Te*"1,,0;) + (W* Loc fi, Tw* 1ocg;) } ds.  (49)

t—oo t 0
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Since the linear span of the set of observables of the formigddense i, we
conclude that for ald € CAR(h) the limit

t

wi(A) = lim = [ w(r(4))ds

t—oo t 0

exists. This shows that, (w,7) = {w4}.
For a trace class operatdron b, Equ. (47) yields

w (AT(A)) = Tr {T ( > PAP.+ w*Aw) } : (50)

Note that if for some operatar, A = i[h,, ¢ in the sense of quadratic forms on
D(h), thenP, AP, = 0 and eigenvalues do not contributeut@(dI'(A4)). This is
the case of the current observahﬂéﬁfgpg)). O

7 Scattering with a trace condition

In this Section, we further investigate Equ. (46) and shav iths equivalent to a
generalization of the well-known Buttiker-Landauer fariawhich expresses the
currents in terms of the scattering data (reflection andstrassion coefficients).
To proceed, we need some further notation. We denotgy = (z — hy) ' and
r(z) = (z — h)~! the resolvent of the decoupled and coupled Hamiltonians. We
define the full junction space & = Rz @ Rs, WhereRr = Rs = OrRr. We
also introduce the canonical projectiofis h — b, as well asj*: & — &; and

The formula

(fl:"' JfMJfS) = (Tlfla"' 7TMfM751fSJ"' 75Mf5)7

defines a Hilbert-Schmidt mag from § to the full junction spac&. Denoting by
M the involution off defined by

M (ula"' y UM, V1, 0 7'UM) — (Ula"' y UMy, Uty - - 7UM)7
we can factorize the coupling as

v=G*MG. (51)
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By the spectral theorem, each reservoir sp@cean be written as a direct
integral

5]
bk :/ bi(A) dA. (52)
sp(hk)
For a bounded measurable functiBronsp(h) one has
® 52
Flhy): / e [ FOVFO) A (53)
sp(hk) sp(hk)

If KCis a separable Hilbert space and K — b a Hilbert-Schmidt oparator, then
for almost all\ € sp(hy) there exists a Hilbert-Schmidt operatéf)) : £ —
h(A) such that

®

Au = / AN udA,
sp(h)

for all u € K. Moreover, ifA, B are two such operators one has

Try(A*B) = / " Tr g (B(A)A(N)") dA. (54)

The following Theorem summarizes the results of statiomage class scat-
tering theory that we shall need to derive the ususal Bétilandauer Formula
from its abstract version (46) (see [Yaffaev]).

Theorem 7.1 Under Assumptions (S1) and (C), the following hold:
1. The non-tangential limits
BY(\) = Gro(A £i0)G,
exist in£?(RK) for almost all\ € R.

2. (1= MBY(\)) ! exists for aimost al\ € R.

3. Foralmost all\ € R, there exists a bounded linear mag\): 8 — hx(N)
such that, for any, € K one has

®
JkGu = / 2k (A)u dA.

p(hi)
Moreover, one has

. 1 5, Rk - Rr .
(N z2(A) = —— (B (N) = BLO))IE 35 = 56 (A = hy) gy

© 2ni
(55)
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4. The scattering matrix = w* w_|y,, IS unitary onhz. For almost all\ €
sp(hx) Nsp(hy), there exists a mapy(A): b () — hi(A) such that

S: @k/EB d)\»—>69k2/ spr(A) fi(A) dX

Sp(hk) (hi)Nsp(hy)

5. One has(\) = 0k + tr(N), where
t(N) = —2mizg (MM (1 — BS(A) M)~ (V) (56)
for almost allA € sp(hy) Nsp(hy).

6. For almost all\ € Ugsp(hy), one has

Ztij()‘)tkj()‘)* = thi()‘)*tjk()‘) = —(tie(A) +tri(A)"). (57)

7. Let||v||; denote the trace norm of Then, the following estimate holds

S [T 0100 B < el (59)

8. Forallu € K one has

S
JwiGru = / 2(A) (1 = MBYL(\) ™ 'ud. (59)
sp(hi)

8 The Bittiker-Landauer formula

Proposition 8.1 Under the assumptions of Theorem 6.5, the steady curreats ar

given by
d\
M)A Dy (A 60
Z/ (hi) ﬂsphl lk( )27[' ( )

where
le()\) =Tr (tkl( tkl — 5kl Z TI‘ tk] tk] )) (61)
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Proof. For the electric current, from Equ. (44), using the factatian (51), one
easily obtain the formula

0 w () R - Sk -
o =G {iGR S - iSRG,

from which it follows that
gwt oPw_ g =21Im (¢gF),

where theg;, = jw> G*j* are Hilbert-Schmidt operators from, to h,. Thus,
we can rewrite (46) as

wp (@) = 2Im ZTI" (i pu(ha) i) -
!

Using the fact thab,(c1> = i[hg, v] = i(hlxv—v1,h) and the intertwinning property
of the Mgller operatoryw_ = w_h,, we derive a similar formula for the energy
currents. Both formulas are summarized in

wi (@) = 2Im " Tr (i *hi' pi(ha)giy), (62)
l

for n = 0, 1. Using the represention (59), Equ. (53) and the idenfity= M j**
we obtain the representations

Wo(h)d = / )= ML)
Sp hl

= [ a0 M)
sp(hi)
From Equ. (54) we conclude that
(n) " dA\
we(®,") = / A" o1 (N) Dy (N) —,
‘ ; sp(hi) 21
where, using the fact th@® (\)* = BY (1)),
Di(\) = dm Im Tr (2(A)(1 — MBY (X)) "M% (1 — BY(A)M) ™'z (M)").

Expanding(l — By (\)M) ' =1+ B} (A\)M(1 — B} (A\)M) ' we can rewrite
Dy, as a sum of two terms. Using the identj§* i~z (\)* = g2 (N)*, the first
term becomes

DY (A) = 478, Tm Tr (z(A) (1 — MB® (A)) "Mz (\)*),
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which, due to Equ. (56), can also be written as
DY (A) = =20k Re Tr (t(N)) = =0k Tr (ta(N) + tix(A)*).
Finaly, the unitarity relation (57) yields

= 6klZTr tk] tk] ))

To deal with the second term
DR\ =
4 Tm Tr (2 (A) (1 = MBY (X)) "M {7 iR B (N }M (1 — BY (M) M)~z (N)*),

we note thatj**;* is an orthogonal projection which commutes wil{ (\)
Hence, Equ. (55) can be written as

Im {j/* i BY TN} = —mz (V) 2z (),
from which it follows that
D (V) =
—4m? Im Tr (2(A) (1 — MB® (X)) ™" Mz, (A)* 26 (A)M (1 — BL(A) M)~ z(N)*).
Using again Equ. (56) we finaly obtain
D (V) = =Tr (tu (V) (V).

0]
Remark. Writing Equs. (60), (61) as
(@) = [ 2 (0u0) = )T (Ot () 5

l
it immediately follows that there are no currents if all nesérs are in the same

state,i.e.,if pp(\) = p(A) for almost all\ € sp(hy) N sp(h;). From the unitarity
relation (57) and the cyclicity of the trace, it also followst
zk:w(q’gc ) = %:/Pz()\))\ Tr (i (M)t (A) = i (A) "t (A)) o

dA

el Z/pl()\))\nTI' (tkl()\)*tkl()\) — tkl()‘)tkl()\)*) %

= 0.
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8.1 Strict positivity on entropy production

To compute the entropy production in the steady state forearpnlibrium reser-
voir densities;, we shall need the following generalization of the Buttikandauer
formula.

Lemma 8.2 Let f € C*™(R) for somes > 0 be such thaff (h;)r; and f(hs)s;,
are Hilbert-Schmidt. Under the assumptions of Theorem 6ebhas

dL(i[h, ji f(h)ji]) € O,

and if
for € L= (sp(hy) Nsp(hy)),

forl=1,---, M, the following formula holds
dA
A0 i f (i) = =3 | (N)F (N Du(N) 3
hk- nsp hl ™

forall w, € ¥4 (w,7).
Recall that we have defined
§k(A) = log pr.(A) — log(1 — pr(N)).

We shall now assume that these functions, definesbéhy ), can be extended to
R. Applying Lemmas 6.3 and 8.2, we obtain

Corollary 8.3 Let¢, € C***(R) for somes > 0 andk = 1,---, M be such that
Ex(hi)ry and&y(hs) sy, are Hilbert-Schmidt. Assume also that

sup [§x(A)|pi(N) < oo.

AER

Then, under the assumptions of Theorem 6.5, one has

pon=3 [ GWFEOPWE. 69

whereF' (z) = (1 + %),
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Assume that all components of the system are | that there are anti-
unitary involutions:, - - - , tj7, ts 0f by, - - -, bas, bs, cOmmuting withhy, - - -, hyy,
hs and such that = tr @® ts = (Brtr) ® ts commutes withy. One has

and hence
trStr = s™.

tr has a direct integral decomposition with fibe$)) corresponding to Equ.
(52) and one has
(M)t (N (A) =t (M)
Hence, the trace
Tr (tk (N) i (N)),

is a symmetric expression ink. Formula (63) thus takes the symmetrized form
. d\
Bpo) =Y [ (6 - 6)(F(6) - P& T (),
kAl sp(hy )Nsp(hy) @

which is obviously non-negative sinééis decreasing.
For each paif/, k) of reservoirs, let us define thiansmission spectruies

(1, k) = {X € sp(hu) Nsp(h) [t (A) # 0}

Then one ha&p(w,) = 0 if and only if, for each paifk,[),
&(A) = &(N),

for almost allA € 7(k,1). In particular, in the cas€,(\) = Br(A — ux), the
entropy production is strictly positive as soon as therstexa pair(k, /) such that
7(k, 1) has positive measure and eitltgr# 5, or . # 1.

The conclusions of the previous paragraph still hold witltba TRI assump-
tion. They follow from the following Proposition.

Proposition 8.4 Under the assumptions of Corollary 8.3, one has

Bp(es) > o F(EDF (&) (€ — €T (titer)

sp(hy)Nsp(hy) L

for any pair(k, ).
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The proof uses essentially the unitarity of thematrix. As far as we know
and according to Stuckelberg [Stu] the idea of derivingtpoty of entropy pro-
duction (Boltzmann’s H-Theorem) from the unitarity of treattering matrix goes
back to Pauli. Here, we follow the implementation of thisadgven by Inagaki,
Wanders and Piron in [IWP].

Proof. We will estimate the integrand in Equ. (63) for fixadand thus we omit
it. First note that, by the unitarity relation 57 and the ayity of the trace one has

le = Tr (tZZth) — 51@[ Z Tr (t/tjtkj)

J

Tr (tter) — O Y Tr (E5i0),
j

from which it follows that
> Dy =) Dy =0. (64)
l k

We note also that

For fixed&y, - - - , &y € R we consider the sum (compare with Equ. (63))

S=Y " Dy&F(&).
Uk

Let = be a permutation such that

&) < ne) <o < nny,s
then we can write

S =Y Du&F(&)
Ik

whereé} = &3 and the matrixDy, = Dy~ also satisfies (64) and (65). In
particular, from Equ. (64), it follows that

Zblkgk = Zle(gk — &)= Zle Z(Ejﬂ — &)
k . -

j<k

= Z (Z Dm) (5j+1 - 53) = chj(gﬁl - 51)

J k>j
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Since Equ. (64) allows to rewrite the matrikas

Cl- _ Zk>j DHC fOI‘ l S]
J —Zijle for l>j

it follows from Equ. (65) thaC;; > 0 for < j andCj; < 0 otherwise. Rewriting
S as

S=Y CyGa1 —&GF &)+ Cii(&e1 — §F (&),

I<j >y

and using the facts that,, — & > 0 andF(§) > F() in the first sum while
F(&) < F(&+1) in the second we obtain

S>Y (Z Ci;F (&) + chjF(ngrl)) (41— &).

J I<j I>j

Since) , C); = 0, this is the same as

S>Y (Z CiF (&) — ZCUF@H)) (11— &),

i \I<y 1<j
and we obtain
S>3 (F(E) - FE))(En— )Y Cy >0, (66)
j 1<j
We further note that, by Equ. (64),
Bj = ZCU = ZZle
1<j I<j k>j
_y (—zm) Y S by
1<j k<j I>j k<j
from which it follows that, ifm < j < n, one has
Bj > Dy, and  Bj > Dy (67)

Given a pair of reservoir@n, n), with m # n, letus setn’ = min(z7~'(m), ="' (n))
andn’ = max(7—(m), 7 *(n)). From the estimate (66), we get

S> Y (F(&) — F(&)) (& —§)B;,

m/<j<n'
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and from Equ. (67) we conclude

S> Do Y (F(&) = FE1)) (&1 — &),

m'<j<n’

The remaining sum is easily estimated, using the factitat) = —F (z) F(—x)
and Jensen inequality

Y (FE) —FEu))Em—&) > min (=F'(x)) Y (§n—§)

m!<j<n! xE[fm/,fn/} m!<j<n!

> F(|£~n’|)F(|ém’|)7(£n’ _ém’)2

1
n' —m'
1

Inserting the resulting estimate

§ = 3 DubeF(E) > 22D F (1) (6 — E)”

Ik

into Equ. (63) lead to the desired inequality.

9 Kubo formula and Onsager reciprocity

In this Subsection, we prove a general Kubo Formula for @uesjport coefficients
of the EBB model. We will therefore restrict the referencatestto equilibrium
reservoirs

Assumption (R3)p;(\) = (1 + efiC-mN-lforj=1,--- M.
We also assume that the system is TRI

Assumption (TRI) There exists a anti-unitary involutid@grion  such
that

Ch():hoc, Cv=vC and 01]:130 forjle

Let us introduce relative coordinates for the affinities

X;=8-05  Xwuyj = Biny — B,
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forj = 1,..., M wheref, 1, are the equilibrium parameters. We denotedy
the (3, u)-KMS state forr and set

o, =0, @y, =0

forj =1,..., M. Remark that the entropy production then takes the form
Ep(wi) = Y Xaw (®a),

to be compared with the phenomenological expression (2).
We also introducéime averagedurrent observables

B = AT (Lo (h) @ lac(h)).

According to Theorem 6.5, one has

w(Pa) = wi(Pa).

Proposition 9.1 For a EBB model satisfying the assumptions of Theorem 6.5 and
(R3), (TRI), one has

Ly = O w3 (Ba) [0 = / g (7 (BB, i, (68)
0

foranyw, € ¥, (w, 7).
Proof. Forj =1,..., M, we set
q = jihijj, Qv = 1 = j7 75,
so that®, = dT'(¢,) with ¢, = —i[h, ¢,]. According to Theorem 6.5 one has
Wi (®a) = Tr (T(X)wZpaw-),

where
T(X) = @(1 + eﬁ(hk*#)*Xka*XMqu‘IMqu)*1
k

It is not hard to see th&f(X) is norm-differentiable and that

Ox., T(X)|x=0 = Trgy(I — Tr),
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whereTr = T(0) = (1 + e#(*==#))~1 (remark thaty, andTz commutes). Hence
the transport coefficients

La'y = 8X7w+(<1>a)|X:0 =Tr (TRq’Y([ — TR)wicpaw,),
are well defined. By the cyclicity of the trace
Loy = Tr (w_Trqy(I — Tr)w* @o) = Tr (w_Tgr(ho + a)§,(I — Tr)w* ¢,),

whereg, = (ho + a)~'¢,. The intertwinning property of the Mgller operator
further yields
Loy =Tr (T(h+ a)w_gyw* (I —T)ep,),

whereT = (1 + e#h=m)~1 generates th3, 11)-KMS statew,,.
Sinceg, is bounded and commutes with, we have

w_Gaw' =w —lim 1,.(h)e™ ™", ™ 1,.(h).
t—00
From the second resolvent identity we obtain
Gy =(h+a) gy + (h+a) 'vg,.
and since the second term on the right hand side of this igesttompact we get

w_gw' = w—lim l(h)e ™ (h+a)"'q, e 1,.(h)

t—o00
= lac(h)(h+a) g lac(h) + / Lac(h)e ™ (h + a) ‘o, e"1,.(h) dt,
0
where the integral is understood in the weak sense. It fallihat
Loy = Tr(T1.c(h)gylac(R)(I —T)pa)
+ / Tr (Tlao(h)e ™o, 1o (B)(T = T)po) dt. (69
0
Since the system is TRI, one has
CqC =¢qo, CTC=T, Cp,C=—pq,

from which it follows that the first term in the right hand sideEqu. (69) van-
ishes. Using Equ. (21), and the fact that currents wanislgaitilerium in TRI
systemse, (®,) = 0) we conclude that

Loy = / e (7 (BB di.
0
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O
We note that, because of thanvariance otv.,, we can rewrite

L= [ ol @)= [ @@y,

—00

and therefore .
L= / g (7(B,)B4) d.

o0

Finaly, sinceL,, is real we have

Loy= Lo, =

N NN= o= N

Yo

which proves

Corollary 9.2 Under the assumptions of Theorem 9.1, the Onsager rectgroci
relations
Ly, =1L

Yoy

hold.

10 Interacting Fermions

In this section, we consider a TRI, interacting EBB model rghelectrons are
allowed to interact in the small syste$n That is, the coupled dynamicis gen-
erated by a local perturbatidn of 7. It is therefore not necessarily Bogoliubov.

To simplify the exposition, we shall only consider the 2 ree& case and set
1y = po = 0. The extension to more than 2 reservoirs and to non-zeroichém
potentials is simple. We parametrise the temperatures by

B =08, Ba=p1+e).
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We setdy = i[V, -]. Besides the two dynamieg = e’ andr! = e, with
0 = do + &y, we will also consider the modular group

t t(50+652)
O-O,E =e ,

for which the reference state . is 5-KMS, and its local perturbation

t — et((s—l-eﬁg)‘

O¢

By Araki perturbation theory, there is a uniq@eKMS statew, for o.. Since
op = T, the statey, is also the3-KMS state ofr.
We assume that the two Mgller morphisms

a=s—limrtort Ye=s—limoyloo
0 ) € 0,¢
t—o00 t— 00

t

€7

exist as well as the inverse morphism

vl =s—lim o7
t—o00

t t
o 00,e|OR7

Then the unique NESS i (wo,¢, 7) iS

Wet = Wo,e ©0 @,
while

We = Wo,e © Ve-

Therefore, one has
Wer (B1) = we 0. Lo a(dy).

Since

vl oa(®)) = tlgglo o toay om0 (®y) = t11>rcl;lo ol oe!2 o rH(®),

and
0,07 0l o 7t (®)) = o7 (1[0 (V) — V, &2 (74(d)))]),

€

we can write

Wer (B1) = we(Py) + /0 h we(i[e'2 (V) — V, e'%2 (7(dy))]) dt.
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By TRI, the first term in the right hand side of this identitynwshes (recall that
w is a uniqgue KMS state for the TRI dynamies). In particularw, (®;) =
wo(®1) = 0. We conclude that

Lis = Oawes (@) co = lim~ [ e (i (V) — Vel ((@,))])

e—0 € 0
Assuming that

%we(i[e“‘b(V) = Ve (r(@1))]) = /0 we(i[e"? (P2), € ('(@1))]) dt,

is L'(dt) uniformly in ¢, we obtain
Li» = / oy (i[y, 74(@1)]) d.
0
By the KMS condition, one has
T
I = / oy (i[Dy, (1 )]) d
0 . |
i / o (Bar (B1) — ByrtH18(Dy)) dt
0
T
— / (£ (@ (B1)) — (¢ + 1)o@ 8(®))) dt
° T
- B WO((I)QTt((I)l))dt.
0

The first term on the right hand side of the last identity camberprted as a
contour integral and by Cauchy Theorem, rewritten as

B .
- /0 (w0 (@7 (@) — (T + i) ( @577 +%(®,))) .
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