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1 Introduction

These lecture notes are an expanded version of the lectveslyy the second and
the fourth author in the summer school "Open Quantum Sys$tkeid in Grenoble,
June 16-July 4, 2003. We are grateful to Stéphane Attal aathAloye for their
hospitality and invitation to speak.

The lecture notes have their root in the recent review arfigiP4] and our goal

has been to extend and complement certain topics coverd@#j.[In particular, we
will discuss the scattering theory of non-equilibrium stgatates (NESS) (this topic
has been only quickly reviewed in [JP4]). On the other harel will not discuss
the spectral theory of NESS which has been covered in detdilR4]. Although
the lecture notes are self-contained, the reader wouldfibérmen reading them in
parallel with [JP4].

Concerning preliminaries, we will assume that the readdansiliar with the

material covered in the lecture notes [At, Jo, Pi]. On oaumgsive will mention or
use some material covered in the lectures [D1, Ja].

As in [JP4], we will work in the mathematical framework of aliyaic quantum

statistical mechanics. The basic notions of this formabsereviewed in Section 3.
In Section 4 we introduce open quantum systems and deshebyéasic properties.
The linear response theory (this topic has not been disduis$dP4]) is described in
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Subsection 4.4. The linear response theory of open quantsiernss (Kubo formu-
las, Onsager relations, Central Limit Theorem) has beatiesiiin the recent papers
[FMU, FMSU, AJPP, JPR2].

The second part of the lecture notes (Sections 6-8) is detmiEn example. The
model we will discuss is the simplest non-trivial exampletted Electronic Black
Box Model studied in [AJPP] and we will refer to it as tB@ample Electronic Black
Box Mode(SEBB). The SEBB model is to a large extent exactly solvabite-NESS
and entropy production can be exactly computed and Kuboutarscan be verified
by an explicit computation. For reasons of space, howevemvill not discuss two
important topics covered in [AJPP]—the stability theornh{eh is essentially based
on [AM, BM]) and the proof of the Central Limit Theorem. Theénested reader
may complement Sections 6—8 with the original paper [AJPE]tae recent lecture
notes [JKP].

Section 5, in which we discuss statistical mechanics of @ frermi gas, is the
bridge between the two parts of the lecture notes.

Acknowledgment.The research of V.J. was partly supported by NSERC. Partof th
work was done while Y.P. was a CRM-ISM postdoc at McGill Umsity and Centre
de Recherches Mathématiques in Montreal.

2 Conceptual framework

The concept of reference state will play an important roleun discussion of non-
equilibrium statistical mechanics. To clarify this notjdet us consider first a clas-
sical dynamical system with finitely many degrees of freedomd compact phase
spaceX C R”". The normalized Lebesgue measdreon X provides a physically
natural statistics on the phase space in the sense that gutfigurations sampled
according to it can be considered typical (see [Ru4]). Noae this has nothing to do
with the fact thatdzx is invariant under the flow of the system—any measure of the
form p(z)dx with a strictly positive density would serve the same purpose. The sit-
uation is completely different if the system has infinitelpmy degrees of freedom.
In this case, there is no natural replacement for the Lelsagguln fact, a measure
on an infinite-dimensional phase space physically dessabthermodynamic state
of the system. Suppose for example that the system is Han@li@and is in thermal
equilibrium at inverse temperatufeand chemical potential. The statistics of such
a system is described by the Gibbs measure (grand canong=inble). Since two
Gibbs measures with different values of the intensive tloelynamic parameteyrs

1 are mutually singular, initial points sampled accordingte of them will be atyp-
ical relative to the other. In conclusion, if a system hasitdly many degrees of
freedom, we need to specify its initial thermodynamic stateehoosing an appro-
priate reference measure. As in the finite-dimensional,dhge measure may not
be invariant under the flow. It also may not be uniquely deteech by the physical
situation we wish to describe.
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The situation in quantum mechanics is very similar. The &dimger represen-
tation of a system with finitely many degrees of freedom iséesially) uniquely
determined and the natural statistics is provided by atigtistpositive density ma-
trix on the Hilbert space of the system. For systems with itefiyy many degrees of
freedom there is no such natural choice. The consequendbis dact are however
more drastic than in the classical case. There is no nathcéte of a Hilbert space
in which the system can be represented. To induce a repatieentve must specify
the thermodynamic state of the system by choosing an agptepeference state.
The algebraic formulation of quantum statistical mechapiovides a mathematical
framework to study such infinite system in a representatidependent way.

One may object that no real physical system has an infinitebeuwf degrees of
freedom and that, therefore, a unique natural referenteaaays exists. There are
however serious methodological reasons to consider thisenatical idealization.
Already in equilibrium statistical mechanics the fundamaéphenomena of phase
transition can only be characterized in a mathematicakgige way within such an
idealization: A quantum system with finitely many degreefeédom has a unique
thermal equilibrium state. Out of equilibrium, relaxatitowards a stationary state
and emergence of steady currents can not be expected froguéséperiodic time
evolution of a finite system.

In classical non-equilibrium statistical mechanics thexists an alternative ap-
proach to this idealization. A system forced by a non-Haomikn or time-dependent
force can be driven towards a non-equilibrium steady spaitevided the energy sup-
plied by the external source is removed by some thermostég.micro-canonical
point of view has a humber of advantages overdagonical infinite system ideal-
ization. A dynamical system with a relatively small numbédegrees of freedom
can easily be explored on a computer (numerical integratieration of Poincaré
sections, ...). A large body of “experimental facts” is ety available from the
results of such investigations (see [EM, Do] for an intraghutto the techniques
and a lucid exposition of the results). From a more thecskperspective, the full
machinery of finite-dimensional dynamical system theorgdoees available in the
micro-canonical approach. Tl@haotic Hypothesigtroduced in [CG1, CG2] is an
attempt to exploit this fact. It justifies phenomenologitermodynamics (Onsager
relations, linear response theory, fluctuation-dissipatbrmulas,...) and has lead to
more unexpected results like the Gallavotti-Cohen Fluatnarheorem. The major
drawback of the micro-canonical point of view is the non-Hénian nature of the
dynamics, which makes it inappropriate to quantum-medadtreatment.

The two approaches described above are not completelyatedelFor exam-
ple, we shall see that the signature of a non-equilibriuradstestate in quantum
mechanics is its singularity with respect to the referenatesa fact which is well
understood in the classical, micro-canonical approack Geapter 10 of [EM]).
More speculatively, one can expect a geneguivalence principldéor dynamical
(micro-canonical and canonical) ensembles (see [Ru5p.rékults in this direction
are quite scarce and much work remains to be done.
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3 Mathematical framework

In this section we describe the mathematical formalism gélataic quantum sta-
tistical mechanics. Our presentation follows [JP4] anduisesl for applications to
non-equilibrium statistical mechanics. Most of the matein this section is well
known and the proofs can be found, for example, in [BR1, BRI Ha, OP, Ta].
The proofs of the results described in Subsection 3.3 aendivAppendix 9.1.

3.1 Basic concepts

The starting point of our discussion is a pé®, 7), whereQ is aC*-algebra with

a unit I andr is a C*-dynamics (a strongly continuous grol > ¢ — 7t of
x-automorphisms o®). The elements o describe physical observables of the
quantum system under consideration and the grogspecifies their time evolution.
The pair(O, 7) is sometimes called @*-dynamical system.

In the sequel, by the strong topology 6hwe will always mean the usual norm
topology of O as Banach space. Tli& -algebra of all bounded operators on a Hilbert
spaceH is denoted by3(H).

A statew on theC*-algebra® is a normalizedy (1) = 1), positive ((A*A) >
0), linear functional orO. It specifies a possiblghysical statef the quantum me-
chanical system. If the system is in the statat time zero, the quantum mechanical
expectation value of the observableat timet is given byw(7?(A)). Thus, states
evolve in the Schrodinger picture accordingup = w o 7¢. The setE(O) of all
states orQ is a convex, weak-compact subset of the Banach space ddabf O.

A linear functionaly € O~ is calledr-invariant ifp o 7t = 1 for all t. The set
of all 7-invariant states is denoted (O, 7). This set is always non-empty. A state
w € E(O, ) is called ergodic if

1 r x __t *
Tlgr;oﬁ/Tw(B 7'(A)B)dt = w(A)w(B*B),
and mixing if
| l‘im w(B*t"(A)B) = w(A)w(B*B),
t|—o0
forall A, B € O.

Let (H,, m,, £2,) be the GNS representation associated to a positive linear fu
tional n € O*. The enveloping von Neumann algebra @f associated to is
m, = m,(0)" C B(H,). A linear functionaly € O* is normal relative ta; or
n-normal, denotegh < 7, if there exists a trace class operatgron H,, such that
p(-) = Tr(pumy,(-)). Any n-normal linear functionak has a unique normal exten-
sion toM,,. We denote byV,, the set of all)-normal statesu < 7 iff N, C N;,.

A statew is ergodic iff, for ally € NV, andA € O,

T
Jim g [ () de = w4,
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For this reason ergodicity is sometimes called return taliegium in mean; see
[Ro1, Ro2]. Similarlyw is mixing (or returns to equilibrium) iff

Jim (' (4)) = w(A),
forall x € N, andA € O.

Letn andu be two positive linear functionals i?*, and suppose that> ¢ > 0
for someu-normalg implies¢ = 0. We then say thaj and, are mutually singular
(or orthogonal), and writey | u. An equivalent (more symmetric) definition is:
nluiffn>¢>0andu >¢>0imply ¢ =0.

Two positive linear functionalg andy in O* are called disjoint if\V;, "N, = 0.

If n andy are disjoint, them L u. The converse does not hold— it is possible that
n andu are mutually singular but not disjoint.

To elucidate further these important notions, we recalfttlewing well-known

results; see Lemmas 4.1.19 and 4.2.8 in [BR1].

Proposition 1. Let 1, us € O* be two positive linear functionals and= 1i; + po.
Then the following statements are equivalent:

(i) p1 L po.
(ii) There exists a projectio#® in 7, (O)’ such that

pi(A) = (P2u, mu(A)$2,), p2(A) = ((I = P) 2y, 1, (A)$2,).

(iii) The GNS representatioft{,,, 7., £2,,) is a direct sum of the two GNS represen-
tations(HM » Ty s 9#1) and(Hﬂz » Tz 9#2)' i'e'v

Hy=Hu, @ Hys, Ty = Ty D Ty, “QM =02, ® “Qlu'

Proposition 2. Let i1, u2 € O* be two positive linear functionals and= iy + pa.
Then the following statements are equivalent:

(i) p1 and sy are disjoint.
(ii) There exists a projectiod® in 7, (O)" N7, (O)"” such that

pa(A) = (P2u, mu(A)$2), p2(A) = ((I = P) 2y, 1, (A)$2).

Letn, u € O* be two positive linear functionals. The functionghas a unique
decompositiom; = n,, + 15, wheren,,,n, are positivey, < p, andn, L u. The
uniqueness of the decomposition implies thaj i§ 7-invariant, then so arg,, and
MNs-

To elucidate the nature of this decomposition we need tdirdeanotions of the
universal representation and the universal envelopingNemmann algebra ab;
see Section Il.2 in [Ta] and Section 10.1 in [KR].

Set
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How= P Hoo Tw= P 7o D =ma(0)".

weE(0) weE(O)

(Hun, mun) is a faithful representation. It is calletie universal representatioof
O. My, C B(Hun) is its universal enveloping von Neumann algebra. Forargy
E(O) the map

Tun(O) — 7, (0)
Tun(A) — 7, (A),

extends to a surjective-morphismz,, : 9,, — 9M,,. It follows thatw uniquely
extends to a normal state(:) = (£, 7. (-)f2,) on M,,. Moreover, one easily
shows that

Ker, = {A € My, |v(A) =0 for any v € N, }. 1)

SinceKer 7, is ac-weakly closed two sided ideal ibt,,,,, there exists an orthogonal
projectionp,, € M., NI, such thaKer 7, = p,M.,. The orthogonal projection

2o =1 —p, € Myn NI, is called thesupport projectiorof the statev. The
restriction of7,, to z,M,, is an isomorphism between the von Neumann algebras
ZoMun andM,,. We shall denote by, the inverse isomorphism.

Let nown, u € O* be two positive linear functionals. By scaling, withoutdasf
generality we may assume that they are states. Sjrise normal state oft,,, it
follows thatij o ¢,, is a normal state ofit,, and hence thaj,, = 7o ¢, o7, defines a
p-normal positive linear functional of?. Moreover, from the relatiop, o 7, (A) =
2, Tun (A) it follows that

N (A) = (824, T (20) 75 (A) 29).

Setting

Ns(A) = (02, 7y (pu) 0 (A)$2),
we obtain a decomposition = 7,, + ns. To show that); L u letw be aup-normal
positive linear functional or© such thatp, > w. By the unicity of the normal
extensionj, one hasj;(A) = 7n(p,A) for A € My,. Sincery, (O) is o-strongly
dense i, it follows from the inequalityf)s o my, > @ o myy thatr(p,A) > @(A)
for any positiveA € 9,,. Sincew is p-normal, it further follows from Equ. (1)
thatw(A) = &(mun(4)) = @(zpmun(4)) < 7(Puzumun(A4)) = 0 for any positive
A € O,ie,w = 0. Sincet, is surjective, one has,(z,) € M, N N, and, by
Proposition 2, the functionats, andn; are disjoint.

Two statesv; andw, are calledquasi-equivalenft A, = N, . They are called
unitarily equivalent if their GNS representatidiié,,, , 7., , £2.,;) are unitarily equiv-
alent, namely if there is a unita§y : H,, — H., such thatU{2,, = (2,, and
Un., (+) = mw, (-)U. Clearly, unitarily equivalent states are quasi-equivale

If wis r-invariant, then there exists a unique self-adjoint oparaton ., such
that

L, =0, 7o (TH(A)) = e m, (A)e1E.

We will call L thew-Liouvillean of .
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The statev is called factor state (or primary state) if its envelopieg Weumann
algebradn,, is a factor, namely if0t,, N 9/, = CI. By Proposition 2v is a factor
state iff it cannot be written as a nontrivial convex combima of disjoint states.
This implies that itw is a factor state and is a positive linear functional iD*, then
eitherw < porw L p.

Two factor statess; andws are either quasi-equivalent or disjoint. They are
quasi-equivalent iffw; + w2)/2 is also a factor state (this follows from Theorem
4.3.19in [BR1)).

The statew is called modular if there exists@*-dynamicso,, on O such that
wis a(o,, —1)-KMS state. Ifw is modular, ther?2,, is a separating vector fow,,,
and we denote by\,,, J andP the modular operator, the modular conjugation and
the natural cone associateds®,. To anyC*-dynamicsr on O one can associate a
unique self-adjoint operatdy on H,, such that for alt

T (Tt (A)) _ eitLﬂ'w(A)e_itL, e_itLP = P.

The operatol. is called standard Liouvillean aefassociated t. If w is r-invariant,
thenL(2, = 0, and the standard Liouvillean is equal to th.iouvillean of 7.

The importance of the standard Liouvillearstems from the fact that if a state
7 is w-normal andr-invariant, then there exists a unique vecfay € Ker L NP
such that(-) = (2, 7 (-)f2,). This fact has two important consequences. On one
hand, ify is w-normal andr-invariant, then some ergodic properties of the quantum
dynamical system{O, 7, n) can be described in terms of the spectral properties of
L; see [JP2, Pi]. On the other handKkr L = {0}, then theC*-dynamicsr has
now-normal invariant states. The papers [BFS, DJ, FM1, FM2, F3R, JP2, JP3,
Mel, Me2, Og] are centered around this set of ideas.

In quantum statistical mechanics one also encountéssiouvilleans, forp €
[1, oo] (the standard Liouvillean is equal to thé-Liouvillean). TheLP-Liouvilleans
are closely related to the Araki-Masudé-spaces [ArM].L! and L>-Liouvilleans
have played a central role in the spectral theory of NESSIdped in [JP5]. The use
of other LP-Liouvilleans is more recent (see [JPR2]) and they will netdiscussed
in this lecture.

3.2 Non-equilibrium steady states (NESS) and entropy prodttion

The central notions of non-equilibrium statistical medbarare non-equilibrium
steady states (NESS) and entropy production. Our defirfildESS follows closely
the idea of Ruelle that a “natural” steady state should pl@the statistics, over
large time intervald0, ¢], of initial configurations of the system which are typical
with respect to the reference state [Ru3]. The definitionrafapy production is
more problematic since there is no physically satisfactfinition of the entropy
itself out of equilibrium; see [Gal, Ru2, Ru5, Ru7] for a dission. Our definition
of entropy production is motivated by classical dynamicexetthe rate of change
of thermodynamic (Clausius) entropy can sometimes beegtliat the phase space
contraction rate [Ga2, RC]. The latter is related to the Gibbtropy (as shown for
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example in [Ru3]) which is nothing else but the relative epyrwith respect to the
natural reference state; see [JPR1] for a detailed dismuésia more general con-
text. Thus, it seems reasonable to define the entropy prioties the rate of change
of the relative entropy with respect to the reference state

Let (O, 1) be aC*-dynamical system and a given reference state. The NESS
associated taw and r are the weak- limit points of the time averages along the
trajectoryw o 7t. In other words, if

1 t
(w)tE—/ wort’ds,
t Jo

thenw, is a NESS associated to and 7 if there exists a net, — oo such that
(W)t (A) = wy(A) forall A € O. We denote by, (w, 7) the set of such NESS.
One easily sees thaf, (w,7) C E(O, 7). Moreover, sinceZ(0) is weaks com-
pact,X (w, T) is non-empty.

As already mentioned, our definition of entropy product®based on the con-
cept of relative entropy. The relative entropy of two densitatricesp andw is
defined, by analogy with the relative entropy of two measurgshe formula

Ent(plw) = Tr(p(logw — log p)). ()

Itis easy to show thdint(p|w) < 0. Lety; an orthonormal eigenbasis efnd byp;
the corresponding eigenvalues. There [0,1] and) . p; = 1. Letg; = (¢4, w ;).
Clearly,q; € [0,1] and}_, ¢; = Trw = 1. Applying Jensen’s inequality twice we
derive

Ent(plw) = > pi((pi,logw ¢;) — logp;)

3

<Y pi(loggi —logpi) <log» ¢; =0.

3 K2

HenceEnt(p|w) < 0. Itis also not difficult to show thdint(p|w) = 0iff p = w; see
[OP]. Using the concept of relative modular operators, Anals extended the notion
of relative entropy to two arbitrary states orC4-algebra [Arl, Ar2]. We refer the
reader to [Arl, Ar2, DJP, OP] for the definition of the Arakiative entropy and its
basic properties. Of particular interest to us is tAat(p|w) < 0 still holds, with
equality if and only ifp = w.

In these lecture notes we will define entropy production anlg perturbative
context (for a more general approach see [JPR2]). Denotethg generator of the
groupr i.e., 7t = !, and assume that the reference state invariant undet-. For
V =V* € Owesetsy =6 +i[V,] and denote by!, = 'V the corresponding
perturbed”*-dynamics (such perturbations are often caltezhl, see [Pi]). Starting
with a statep € N, the entropy is pumped out of the system by the perturbafion
at a mean rate

_% (Ent(p o 7y |w) — Ent(plw)).
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Suppose that is a modular state for &*-dynamicss!, and denote by, the gen-
erator ofo,,. If V€ Dom (4,,), then one can prove the following entropy balance
equation

t
Ent(p o 74 w) = Ent(plw) — / o (ov)) ds, (3)

where
oy = 0,(V),
is the entropy production observable (see [JP6, JP7]). &mgum mechanicsy

plays the role of the phase space contraction rate of cllghtoamical systems (see
[JPR1]). We define the entropy production rate of a NESS

1 [t
p+:W*7hm—/ poTydse€ Xi(p,1v),
0

<« a

by
1
Ep(py) = —lim — (Ent(p o 77 |[w) — Ent(plw)) = p4(ov).

(03
SinceEnt(p o 7, |w) < 0, an immediate consequence of this equation is that, for

P+ € Xi(p,7v),
Ep(p+) > 0. (4)

We emphasize that the observable depends both on the reference statend
on the perturbatior. As we shall see in the next sectiaty; is related to the thermo-
dynamic fluxes across the system produced by the perturbdtemd the positivity
of entropy production is the statement of the second lawertiodynamics.

3.3 Structural properties

In this subsection we shall discuss structural propertid$ESS and entropy pro-
duction following [JP4]. The proofs are given in Appendig 9.

First, we will discuss the dependenceXf (w, 7/) on the reference state On
physical grounds, one may expect thavifs sufficiently regular ang is w-normal,
then2+(17,7-v) = 2_,_(&), Tv).

Theorem 1.Assume thab is a factor state on th€'*-algebra® and that, for all
neN,andA, B e O,

1T
lim / 0l (A), B)) dt = 0,

holds (weak asymptotic abelianness in mean). Thefv), 7 ) = X' (w, 7) for all
n e MN,.

The second structural property we would like to mention is:

Theorem 2.Letn € O* bew-normal andry -invariant. Theny(oy ) = 0. In partic-
ular, the entropy production of the normal part of any NES&gsal to zero.
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If Ent(n|w) > —oo, then Theorem 2 is an immediate consequence of the en-

tropy balance equation (3). The caBet(n|w) = —oo has been treated in [JP7]
and the proof requires the full machinery of Araki’s pertatibn theory. We will not
reproduce it here.

If w, is a factor state, then either. < worwy 1 w. Hence, Theorem 2 yields:

Corollary 1. If w, is a factor state an®p(w;) > 0, thenw; | w. If wis also a
factor state, the andw are disjoint.

Certain structural properties can be characterized ingesfrthe standard Li-
ouvillean. LetL be the standard Liouvillean associatedrtand L, the standard
Liouvillean associated tey . By the well-known Araki’s perturbation formula, one
hasLy =L+ V — JVJ (see [DJP, Pi]).

Theorem 3. Assume that is modular.
(i) Under the assumptions of Theorem 1,Kbr Ly # {0}, then it is one-
dimensional and there exists a unique normgkinvariant statewy such that
Yi(w,mv) =A{wv}

(i) If Ker Ly = {0}, then any NESS i&'; (w, 7v) is purely singular.
(iii) If Ker Ly contains a separating vector fagt,,, then X, (w, 7y) contains a
unique statev and this state is;-normal.

3.4 C*-scattering and NESS

Let (O, 1) be aC*-dynamical system antl a local perturbation. The abstract -
scattering approach to the study of NESS is based on theMaolipassumption:

Assumption (S)The strong limit

+ t

ay, =s—limT

o T€/,
t—oo

exists.

The mapey, is an isometrici-endomorphism o®), and is often called Mgller
morphisma;; is one-to-one but it is generally not onto, namely

O4 =Ranay, # 0.

Sinceay; o i, = 7t 0 af;, the pair(OL, 7) is aC*-dynamical system and; is an
isomorphism between the dynamical systé@sry ) and(O, 7).

If the reference state is r-invariant, thenv, = w o af; is the unique NESS
associated t@ andry, and

w* —limwot{ = w,.
t—o0
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Note in particular that ifv is a(r, 5)-KMS state, therv. is a(7y, 3)-KMS state.

The mapy;, is the algebraic analog of the wave operator in Hilbert s;gaagter-
ing theory. A simple and useful result in Hilbert space sraig theory is the Cook
criterion for the existence of the wave operator. Its alg&banalog is:

Proposition 3. (i) Assume that there exists a dense sulkiketc O such that for
all A € Oy,

/0 IV 7 (A)]] dt < oo. (5)

Then Assumptio(S) holds.
(i) Assume that there exists a dense sulidet_ O such that for allA € Oy,

/O Tt (A dt < oo (6)

ThenO, = O andcy;, is ax-automorphism o).

Proof. For all A € © we have

to
7t o T\t/z (A) —rho T\t/l (A) = i/ T_t([Vv T\IE/(A)]) dt,
t1

(7)

ta

T\?t2 o7 (4) — Tm;tl o7 (A) = _i/ T;t([‘/’ T (A)]) dt,
t1
and so
ta
[ o a) —r o rp )l < [ IVl at

t1

8)

ta
%2 0 72(A) — 7, o T (A)]| < / [V, 7 (A)]]| dt.
t1
To prove Part (i), note that (5) and the first estimate in (§limthat forA € O, the
norm limit
of‘t (A4) = tlim 7 to 7'€/ (4),
exists. Sinc&), is dense and~* o 7{, is isometric, the limit exists for alt € O,
anda¢ is ax-morphism ofO. To prove Part (ii) note that the second estimate in (8)
and (6) imply that the norm limit

[ﬁ (A4) = tlirgc T‘;t o7(A),

also exists for alld € O. Sinceay o 3;7(A) = A, af; is ax-automorphism o).
O
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Until the end of this subsection we will assume that the Agsion (S) holds
and thatv is 7-invariant.

Let® = w | Oy and let(Hz, 75, £2;) be the GNS-representation 6%, as-
sociated tao. Obviously, if o is an automorphism, thed = w. We denote by
(Hw, 7w, f2., ) the GNS representation @7 associated ta,.. Let Ly and L,
be the standard Liouvilleans associated, respective({?ta 7, o) and(O, v, w. ).
Recall thatZ; is the unique self-adjoint operator 6ty such that ford € O,

L8025 =0, ms(TH(A)) = eitL“"ﬂ'@(A)e_itL@,
and similarly forL,,, .
Proposition 4. The map
Uﬂ'@(a‘t(A))Q@ = T, (A) 20, ,

extends to a unitary/ : H; — H.,, which intertwines.; and L., , i.e.,

ULy = L, U.

Proof. Setr’,(A) = 75 (aq7(A)) and note that’, (0)2; = 7 (04 )2, so that2;
is cyclic for, (O). Since
wi(A) = w(af(4) = &(af(4) = (2, 7 () (A))2s) = (s, 7 (A)2:),

W

(Hw, 7, 25) is also a GNS representation ©fassociated ta;.. Since GNS rep-
resentations associated to the same state are unitarilyaéent, there is a unitary
U:Hy — He, suchthat/§2; = 2, and

Unj(A) = m, (A)U.
Finally, the identities

UeitL‘DW:D(A>.Q@ _ UW@(Tt(OZ$(A)))Q@ = UW@(O&$(T€/(A>>>Q®

= Twy (7_\16/ (A>>'Qw+ =

= et Unl (A) 025,

yield thatU intertwinesL; andL,+. O
We finish this subsection with:

Proposition 5. (i) Assume that € E(O4, 7) is T-ergodic. Then
Li(mrv) ={ws},

forall n € N,.
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(i) If @ is T7-mixing, then
lim norl =wy,
t—o0

foralln € N,.

Proof. We will prove the Part (i); the proof of the Part (ii) is simildf n € A,
thenn | O, € N3, and the ergodicity of yields

fm L [ (b (A) df = B(at(A)) = w (A
Jim = [ e ()t = (07 (4) = (),

This fact, the estimate
In(ry, (A)) = n(r* (af, ()| < I77" o 7, (A) — a (A)],

and Assumption (S) yield the statementl

4 Open quantum systems

4.1 Definition

Open quantum systems are the basic paradigms of non-equitilgjuantum statis-
tical mechanics. An open system consists of a “small” sys$eimteracting with a
large “environment” or “reservoirR.

In these lecture notes the small system will be a "quantufdatquantum
mechanical system with finitely many energy levels and neriral structure. The
systemsS is described by a finite-dimensional Hilbert spa¢g = CV and a Hamil-
tonian Hs. Its algebra of observabl&3s is the full matrix algebral/y (C) and its
dynamics is given by

TE(A) — eitHsAe—itHs — et65 (A),

whereds(-) = i[Hs, -]. The states o are density matrices oH.s. A convenient

reference state is the tracial statg,(-) = Tr(-)/ dim Hs. In the physics literature
ws is sometimes called the chaotic state since it is of maximabey, giving the

same probabilityt / dim H s to any one-dimensional projection s

The reservoir is described by@ -dynamical systentOx, 7= ) and a reference
statewr . We denote by the generator ofz.

The algebra of observables of the joint systém R is O = Os ® O and
its reference state is = ws ® wr. Its dynamics, still decoupled, is given by =
Tt @ 7h. LetV = V* € O be a local perturbation which coupléso the reservoir
R. Thex-derivationdy = ég +ds+i[V, -] generates the coupled dynamig¢son O.
The coupled joint syster§ + R is described by th€*-dynamical systentO, 7v)
and the reference state Whenever the meaning is clear within the context, we will
identify Os andOx with subalgebras o® via A ® Ip,,, Ios ® A. With a slight
abuse of notation, in the sequel we denkie andlpg by I.
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We will suppose that the reservair has additional structure, namely that it con-
sists of M partsR4,--- , R , Which are interpreted as subreservoirs. The subreser-
voirs are assumed to be independent—they interact onlygrohe small system
which allows for the flow of energy and matter between varguseservoirs.

The subreservoir structure & can be chosen in a number of different ways and
the choice ultimately depends on the class of examples osteewito describe. One
obvious choice is the following: thith reservoir is described by thg*-dynamical
system(Ox,, =) and the reference statgz ;, andOr = ®Ox;, TR = ®TR;,

w = Rwg,; [JP4, Rul]. In view of the examples we plan to cover, we withate a
more general subreservoir structure.

We will assume that thg-th reservoir is described by@*-subalgebraddr, C
O which is preserved by . We denote the restrictions o andwr to O, by
Tr, andwg . Different algebra®)z; may not commute. However, we will assume
thatOr, NOr,; = CIfori # j.If Ay, 1 <k < N, are subsets adPr, we denote
by (A;,---, Ax) the minimalC*-subalgebra 0O that contains alld;. Without
loss of generality, we may assume tigt = (Or,, -, Ory)-

The systersS is coupled to the reservoR; through ajunctiondescribed by a
self-adjoint perturbatiof; € Os ® Ox,. The complete interaction is given by

V=SV, ©

Fig. 1. JunctionsV, V> between the systeii and subreservoirs.
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An anti-linear, involutive x-automorphism: O — O is called aime reversalf
it satisfiest(Hs) = Hs, v(V;) = V; ande o szj = 77;;? ot If vis a time reversal,
then

tort =717"or, ‘COT‘t/:T‘;tO‘C,

and a state» on O is time reversal invariant i o t(A) = w(A*) forall A € O. An
open quantum system described(dy, ) and the reference stateis called time
reversal invariant (TRI) if there exists a time reversalich thatv is time reversal
invariant.

4.2 C*-scattering for open quantum systems

Except for Part (ii) of Proposition 3, the scattering apgioto the study of NESS,
described in Subsection 3.4, is directly applicable to ogpesntum systems. Con-
cerning Part (ii) of Proposition 3, note that in the case afroguantum systems the
Mgller morphismy; cannot be onto (except in trivial cases). The best one mag hop
foris thatO; = Ox, namely thaty is an isomorphism between tlig -dynamical
systemg O, 7)) and(Og, 7= ). The next theorem was proved in [Rul].

Theorem 4. Suppose that Assumption (S) holds.

(i) If there exists a dense sétz o C Ox such that for allA € Oxy,

[ iwrtaar < o, (10)
0
thenOr C Oy.
(ii) If there exists a dense sély C O such that for allX € Og and A € Oy,
Jim|X, 7 (A = o, (1)

thenO, C Ox.

(iii) If both (10) and (11) hold theny;, is an isomorphism between th&-dynamical
systemgO, m) and(Ox, Tr). In particular, if wg is a(rr, 3)-KMS for some
inverse temperaturg, thenw, is a (v, §)-KMS state.

Proof. The proof of Part (i) is similar to the proof of the Part (i) ofdposition 3.
The assumption (10) ensures that the limits

B (4) = lim 7l 0 771(4),

exist for all A € Og. Clearly,a, o 8/(4) = Aforall A € Og and soOx C
Ran a‘“;.

To prove Part (i) recall thaDs is a N2-dimensional matrix algebra. It has a
basis{Ey |k = 1,---, N2} such thatr!(Ey) = el E, for somef;, € R. From

Assumption (S) and (11) we can conclude that

0= lim eite’“T*t([Ek,T‘t/(A)]) = lim [Ep,7 "ol (A)] = [Ek,a‘t(A)],

t——+oo t——+oo
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for all A € Oy and hence, by continuity, for all € O. It follows that Ran o,
belongs to the commutant 6fs in O. SinceO can be seen as the algebia; (Or)
of N x N-matrices with entries i0z, one easily checks that this commutant is
preciselyOx .

Part (iii) is a direct consequence of the first two parts.

4.3 The first and second law of thermodynamics

Let us denote by; the generator of the dynamical growg, . (Recall that this dy-
namical group is the restriction of the decoupled dynanudbé subreservoir ;).
Assume thaV; € Dom (4;). The generator ofy is dy = ég +i[Hs + V,-] and it
follows from (9) that the total energy flux out of the resenisigiven by

St Hs +V) = (v (Hs + V) = 7GR (V) = 36 65(V;))

Thus, we can identify the observable describing the heatilihof thej-th reservoir
as
P =6;(V) = 6;(V;) = o= (Vj).

We note that it is a time-reversal, ther(®;) = —&;. The energy balance equation

M
> @ =0v(Hs +V),

j=1

yields the conservation of energy (the first law of thermawyics): for anyry -
invariant state;,

M
> (@) =0. (12)
j=1

Besides heat fluxes, there might be other fluxes across thensys+ R (for
example, matter and charge currents). We will not discussthe general theory of
such fluxes (the related information can be found in [FMU, RMEM]). In the rest
of this section we will focus on the thermodynamics of heatdli Charge currents
will be discussed in the context of a concrete model in thesépart of this lecture.

We now turn to the entropy production. Assume that theretex<*-dyna-
mics ok, on Ox such thatwy is (or, —1)-KMS state and such thatz preserves
each subalgebr@r ;. Let Sj be the generator of the restriction @k to Oz, and

assume thal; € Dom (d;). The entropy production observable associated to the
perturbatiori” and the reference state= ws Qwr, wherews(-) = Tr(-)/ dim Hs,
is

M ~
ov =Y ;(Vy).
j=1
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Until the end of this section we shall assume that the resen@yr, are in
thermal equilibrium at inverse temperaturgs. More precisely, we will assume
thatwr, is theunique(rr, , 5;)-KMS state onOr ;. Thend; = —/3;4;, and

M
oy = —Zﬁjéj.
7j=1

In particular, for any NESS, € X, (w, 7y ), the second law of thermodynamics
holds:

M
> Bjwi(®;) = —Ep(wy) < 0. (13)
j=1

In fact, it is not difficult to show thaEp(w- ) is independent of the choice of the
reference state of the small system as longas> 0; see Proposition 5.3 in [JP4].
In the case of two reservoirs, the relation

(B1 = Bo)wi (1) = Brwy (P1) + Pawi(P2) <0,

yields that the heat flows from the hot to the cold reservoir.

4.4 Linear response theory

Linear response theory describes thermodynamics in thimeaghere the “forces”
driving the system out of equilibrium are weak. In such amegito a very good
approximation, the non-equilibrium currents depend lilyean the forces. The ul-
timate purpose of linear response theory is to justify wathlkn phenomenological
laws like Ohm’s law for charge currents or Fick’s law for heatrents. We are still
far from a satisfactory derivation of these laws, even infthenework of classical
mechanics; see [BLR] for a recent review on this matter. e afer to [GVV6]
for a rigorous discussion of linear response theory at therosaopic level.

A less ambitious application of linear response theory eometransport proper-
ties of microscopic and mesoscopic quantum devices (thermes in nanotechnolo-
gies during the last decade have triggered a strong interést transport properties
of such devices). Linear response theory of such systemads etter understood,
as we shall try to illustrate.

In our current setting, the forces that drive the system R out of equilibrium
are the different inverse temperaturss- - - , 5y, of the reservoirs attached & If
all inverse temperaturgs are sufficiently close to some valgg,, we expect linear
response theory to give a good account of the thermodynarvhitte system near
thermal equilibrium at inverse temperatyig,.

To emphasize the fact that the reference state ws ® wg depends on thg;
we setX = (Xq,---,Xn) with X; = B4 — 5, and denote bwx this reference
state. We assume that for some- 0 and all|X| < e there exists a unique NESS
wx+ € Y4 (wx,7v) and that the functionX — wx . (®;) areC?. Note thatw
is the (unique) Ty, feq)-KMS state or0. We will denote it simply bywg, . .
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In phenomenological non-equilibrium thermodynamics,dhelity between the
driving forcesF,,, also calledaffinities,and the steady currents, they induce is
expressed by the entropy production formula

Ep:ZFad)av

(see [DGM]). The steady currents are themselves functibiseoaffinities¢, =
o (F1,---). Inthe linear response regime, these functions are givehéelations

¢a = ZLavF'ya
v

which define thekinetic coefficientd .
Comparing with Equ. (13) and using energy conservation {2pbtain in our
case

M
Ep(wxi) =Y X;jwx(®).
j=1

Thus X is the affinity conjugated to the steady heat fluXX) = wx(®;) out
of R;. We note in particular that the equilibrium entropy prodoictvanishes. The
kinetic coefficientd.;; are given by

0¢;
Lj = <8)(Ji)x_0 = Ox,wx+(P;)|x=o0-

Taylor’s formula yields

M

0;(X) = wx(8)) = Y LjiXi + O(e%), (14)
=1
M
Ep(wX+) = Z LJZXlX] + 0(62). (15)
1,j=1

Combining (14) with the first law of thermodynamics (recal)) we obtain that for
all 4,

M
> Lj=o. (16)
j=1
Similarly, (15) and the second law (13) imply that the quéidrarm
M
Z Lji X Xj,
i,j=1

onRM is non-negative. Note that this does not imply that Miex M -matrix L is
symmetric !
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Linear response theory goes far beyond the above elemeaetations. Its true
cornerstones are th®nsager reciprocity relation§ORR), the Kubofluctuation-
dissipationformula (KF) and theCentral Limit Theoren{CLT). All three of them
deal with the kinetic coefficients. The Onsager reciprooiiations assert that the
matrix L;; of a time reversal invariant (TRI) system is symmetric,

Lj; = Lyj. (17)

For non-TRI systems, similar relations hold between thespart coefficients of the
system and those of the time reversed one. For example,éfriversal invariance
is broken by the action of an external magnetic fi@ldthen the Onsager-Casimir
relations

hold.
The Kubo fluctuation-dissipation formula expresses thespart coefficients of
a TRI system in terms of thequilibriumcurrent-current correlation function

1
Cji(t) = 5 wWpea (T (25)8s + Biry (25)), (18)
namely
1 o0
L = B [m Cji(t) dt. (19)

The Central Limit Theorem further relatés; to the statistics of the current fluctu-
ations in equilibrium. In term of characteristic functighe CLT for open quantum
systems in thermal equilibrium asserts that

lim w,, (ei(zﬁlsj Jfé@j)ds)/ﬂ) — e 3 X D &6 (20)

t—o0
where the covariance matri?;; is given by
Dji =2 Lﬂ

If, for a self-adjointA € O, we denote by, ;;(A) the spectral projection on the
interval[a, b] of m,,, (A), the probability of measuring a value dfin [a, b] when
the system is in the state;, , is given by

Probwﬁcq {A S [a,b]} = (Qwﬁcq7 1[a,b] (A) Qwﬁcq).
It then follows from (20) that
1 ¢ a b 1 b 2 2
lim Prob,, <~ [ 75(¢;)dse |2, 2 :7/ o2 /2L% 4y
tirgo r Beq{t/O TV( ]) § |:\/E \/E:|} /_27TL]']' . 4y
(21)

This is a direct translation to quantum mechanics of thesatakcentral limit the-
orem. Because fluxes do not commuie;, #;] # 0 for j # i, they can not be
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measured simultaneously and a simple classical probébiligerpretation of (20)
for the vector variabl® = (&4, - -- , $j;) is not possible. Instead, the quantum fluc-
tuations of the vector variable are described by the so-callfidctuation algebra
[GVV1, GVV2, GVV3, GVV4, GVV5, Ma]. The description and styaf the fluc-
tuation algebra involve somewhat advanced technical taotsfor this reason we
will not discuss the quantum CLT theorem in this lecture.

The mathematical theory of ORR, KF, and CLT is reasonably welerstood in
classical statistical mechanics (see the lecture [Refhdrcontext of open quantum
systems these important notions are still not completeljewstood (see however
[AJPP, JPR2] for some recent results).

We close this subsection with some general comments aboRtadid KF.

The definition (18) of the current-current correlation ftiog involves a sym-
metrized product in order to ensure that the functigp(t) is real-valued. The cor-
responding imaginary part, given by

1.
51[@,7‘3@3‘)]7

is usually non-zero. However, sineg,_, is a KMS state, the stability condition (see
[BR2]) yields

| wntiwirb@a=o (22)

— 00

so that, in this case, the symmetrization is not necessalpaa can rewrite KF as

1 o
Lj; = 5/ W, (Di7ir (D)) dt.

— 00

Finally, we note that ORR follow directly from KF under the T&sumption.
Indeed, if our system is TRI with time reversale have

o(@) = @i, o(y(9))) = —7y (D), W, O =W,

and therefore

Cii(0) = 5 g (77 (831 + By (@) = a1,

Sincewg,, is Ty -invariant, this implies

1
Cji(t) = 5 Wea (P70 (Bi) + 70 (@:)85) = Ci (1),
and ORR (17) follows from KF (19).
In the second part of the lecture we will show that the Onsegjations and the
Kubo formula hold for the SEBB model. The proof of the Centiiatit Theorem for
this model is somewhat technically involved and can be faojdJPP].
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4.5 Fermi Golden Rule (FGR) thermodynamics

Let A € R be a control parameter. We consider an open quantum systénteou-
pling A\V and writer for 7y, w4 for w,, etc.

The NESS and thermodynamics of the system can be describsedcond or-
der of perturbation theory in, using the weak coupling (or van Hove) limit. This
approach is much older than the "microscopic" Hamiltonippraach discussed so
far, and has played an important role in the developmenteo$tiject. The classical
references are [Dal, Da2, Haa, VH1, VH2, VH3]. The weak dogpimit is also
discussed in the lecture notes [D1].

In the weak coupling limit one “integrates” the degrees etftom of the reser-
voirs and follows the reduced dynamics®bn a large time scalg/\%. In the limit
A — 0 the dynamics ofS becomes irreversible and is described by a semigroup,
often called theguantum Markovian semigrolf@®@MS). The generator of this QMS
describes the thermodynamics of the open quantum systeattmd order of per-
turbation theory.

The “integration” of the reservoir variables is performedallows. As usual, we
use the injectiol — A ® I to identify Os with a subalgebra of. For A € Og
andB € O we set

Ps(A® B) = Awgr (B). (23)

The mapPs extends to a projectiols : O — Og. The reduced dynamics of the
systems is described by the family of maf : Os — Os defined by

TX(A) = Ps (15" o (A® D))

Obviously,T% is neither a group nor a semigroup. ke be an arbitrary reference
state (density matrix) of the small system ane- ws ® wgr. Then foranyA € Og,

w(rg o THA® 1)) = Trys (ws TA(A))-

In [Dal, Da2] Davies proved that under very general condgithere exists a linear
mapKy : Os — Og such that

lim 73/ (4) = ' (4).

The operatorKy is the QMS generator (sometimes called the Davies gengrator
in the Heisenbergicture. A substantial body of literature has been devotetthe
study of the operatoKy (see the lecture notes [D1]). Here we recall only a few
basic results concerning thermodynamics in the weak cogitilinit (for additional
information see [LeSp]). We will assume that the generatitt@ms described in the
lecture notes [D1] are satisfied.

The operatoiy generates a positivity preserving contraction semigrau@?o.
Obviously, Ku(I) = 0. We will assume that zero is the only purely imaginary
eigenvalue ofKy and thatKer Ky = CI. This non-degeneracy condition can be
naturally characterized in algebraic terms, see [D1, Sginplies that the eigen-
value(0 of Ky is semi-simple, that the corresponding eigenprojectiantha form
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A — Tr(ws+A)I, wherews ; is a density matrix, and that for any initial density
matrixws,
1tlim Tr(wse' M (A)) = Tr(ws + A) = ws 4 (A).

The density matrixs  describes the NESS of the open quantum system in the weak
coupling limit. One further shows that the operaio has the form

M
Ky = ZKH.,ja
j=1

whereKy ; is the QMS generator obtained by considering the weak cogfitinit
of the coupled syster + R ;, i.e.,

etKH,j (A) — ;E}I}) PS (T(;t/AQ o Tf\,/;\z (A ® I)) , (24)

wherer, ; is generated by; +i[Hs + AV}, - ].

One often considers the QMS generator in the Schrédingempiadenotedss.
The operatoiK is the adjoint of Ky with respect to the inner producX,Y) =
Tr(X*Y). The semigroup!Xs is positivity and trace preserving. One similarly de-
finesKs_ ;. Obviously,

M
Ks(ws+) =0, Ks = ZKSJ'
j=1

Recall our standing assumption that the resen@igs are in thermal equilibrium at
inverse temperature;. We denote by

wg = e PHs /Tr(e=PHs),

the canonical density matrix &f at inverse temperatuyg(the uniqug(rs, 5)-KMS
state or0s). Araki’s perturbation theory of KMS-states (see [DJP, BB&Ids that
for A € Og,

wg; @ WR, (7-()716 ° Ti,j(A ® I)) = Wg; (A) +O0(\),
uniformly in ¢. Hence, for alt > 0,
wg, (€11 (A)) = wg, (A),

and soKs j(ws;) = 0. In particular, if all 3;’s are the same and equal t then
WS+ = wg.

Let Oy C Os be thex-algebra spanned by the eigenprojectionsf. Oq4
is commutative and preserved B§y, Ky, ;, Ks and Kg ; [D1]. The NESSws4
commutes withH s. If the eigenvalues of/s are simple, then the restrictidky |
Oq is a generator of a Markov process whose state space is th&wspeof Hs.
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This process has played an important role in the early dpwedmt of quantum field
theory (more on this in Subsection 8.2).

We now turn to the thermodynamics in the weak coupling linvitjch we will
call Fermi Golden Rule (FGR) thermodynamitée observable describing the heat
flux out of thej-th reservoir is

Prar,j = K j(Hs)-
Note thatdy,, ; € Oq. SinceKg(ws +) = 0 we have

M
ZWS+(4’fgr,j) =ws+(Ku(Hs)) =0,

j=1

which is the first law of FGR thermodynamics.
The entropy production observable is

M
Ofgr = — Z ﬂj@fgr,jv (25)
j=1

and the entropy production of the NE&g . is

Epfgr (WS+) = Ws+ (Jfgr)'

Since the semigroup generated gy ; is trace-preserving we have

d v
37 Eot(e S ws 4w, im0 = =B we+ (Prgr,j) — Tr(Ks j(ws+) logws),

where the relative entropy is defined by (2). The function
t — Ent(e™Siwg 4 |wg,),

is non-decreasing (see [Li]), and so

M
d .
Epgg (ws+) = Z N Ent(e"iws 4 lwg;)|i=0 > 0,
j=1

which is the second law of FGR thermodynamics. Moreovergutige usual non-
degeneracy assumptiofi&yy,, (ws ) = Oifand onlyif 3, = - -- = B, (see [LeSp]
for details).

Let us briefly discuss linear response theory in FGR thermandycs using the
same notational conventions as in Subsection 4.4. Thei&icetfficients are given
by

Ligr ji = Ox,ws + @fgr,j”X:O-

For|X| < e one has
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M
ws 4 (Prgr.j) = Ltar.ji Xi + O(€”),

=1

M
Eppy(ws+) = > Liarji XiX; + 0(€).

ij=1

The first and the second law yield that for all

M
Z Lfgr,ji = 07
j=1

and that the quadratic form

M
Z Lggr ji X3 X5,

ij=1

is non-negative. The Kubo formula
Ligusi = [ i (50(25) @) (26)
0
and the Onsager reciprocity relations

Lfgr,ji = Lfgr,ija (27)

are proven in [LeSp].

Finally, we wish to comment on the relation between micrpgcand FGR ther-
modynamics. One naturally expects FGR thermodynamicsadyme the first non-
trivial contribution (in)\) to the microscopic thermodynamics. For example, the fol-
lowing relations are expected to hold for small

Wi+ = WS+ + O()\),
(28)
Wt (D)) = Nws i (Prgr j) + O(N?).

Indeed, it is possible to prove that if the microscopic thedgnamics exists and is
sufficiently regular, then (28) hold. On the other hand, ldsthing existence and
regularity of the microscopic thermodynamics is a formidahsk which has been
so far carried out only for a few models. FGR thermodynansie®iy robust and the
weak coupling limit is an effective tool in the study of the dets whose microscopic
thermodynamics appears beyond reach of the existing tgeasi
We will return to this topic in Section 8 where we will discubg FGR thermo-

dynamics of the SEBB model.
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5 Free Fermi gas reservoir

In the SEBB model, which we shall study in the second part of lécture, the
reservoir will be described by an infinitely extended freenfieggas. Our description
of the free Fermi gas in this section is suited to this apptica

The basic properties of the free Fermi gas are discusseckitetiiure [Me3]
and in Examples 18 and 51 of the lecture [Pi] and we will asstiraethe reader is
familiar with the terminology and results described thérenore detailed exposition
can be found in [BR2] and in the recent lecture notes [D2].

The free Fermi gas is described by the so called CAR (canbaitizommuta-
tion relations) algebra. The mathematical structure af gitgebra is well understood
(see [D2] for example). In Subsection 5.1 we will review tksults we need. Sub-
section 5.2 contains a few useful examples.

5.1 General description

Let h andh be the Hilbert space and the Hamiltonian of a single Fermigawill
always assume thatis bounded below. Lef_ () be the anti-symmetric Fock space
overl and denote byi*(f), a(f) the creation and annihilation operators for a single
Fermion in the stat¢ € h. The corresponding self-adjoint field operator

1

o(f) = E(a(f)Jra*(f)),

satisfies the anticommutation relation

o(f)p(g) +e(g9)p(f) = Re(f, 9)I.

In the sequek” stands for either or a*. Let CAR(h) be theC*-algebra gen-
erated by{a®(f)| f € b}. We will refer to CAR(h) as the Fermi algebra. The
C*-dynamics induced by is

Tt(A) = eitdl—‘(h)Ae—itdF(h).

The pair(CAR(h), 7) is aC*-dynamical system. It preserves the Fermion number
in the sense that’ commutes with the gauge group

9t(A) = oitd (1) go—itd (1)

Recall thatV = dI'(I) is the Fermion number operator én () and thatr andv
are the groups of Bogoliubov automorphisms

T (f) = a® (@), 9'(a*(f)) = a* ().

To every self-adjoint operatdr on b such thad < 7' < I one can associate a
statewr on CAR(h) satisfying

wr(a*(fn) - a*(fi)a(gr) - - - algm)) = dn,mdet{(g:, Tf;)}- (29)
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This¢-invariant state is usually called the quasi-free gaugeriant state gener-
ated byT'. It is completely determined by its two point function

wr(a™(f)alg)) = (9, Tf).

We will often callT" the density operatoor simply thegeneratorof the statevr.
Alternatively, quasi-free gauge-invariant states can éscdbed by their action on
the field operators. For any integewe defineP,, as the set of all permutationsof
{1,...,2n} such that

m(25 — 1) <w(2§), and =w(2j—1)<7(2j+1),

for everyj € {1,...,n}. Denote by(r) the signature ofr € P,,. wr is the unique
state onCAR(h) with the following properties:

wr(p()e(f2)) = 3 (i, f2) — im(f1, Tho),

n

wT(<P(f1) s 99(f2n)) = Z 6(77) H wT(‘P(fw(2j71))(P(fw(2j)))a

TEPy 7j=1

wr(p(f1) - e(fant1)) = 0.

If h = b1 @ hyandT =T, & T, then forA € CAR(h;) andB € CAR(h2) one
has
wr (A B) = wn (A) 9% 2 (B) (30)

wr is a factor state. It is modular iiKer T' = Ker (I — T') = {0}. Two states
wr, andwr, are quasi-equivalent iff the operators

72T and (I -T)Y?2— (I-Ty)V2 (31)

are Hilbert-Schmidt; see [De, PoSt, Ri]. Assume f§at T; = Ker (I — T;) = {0}.
Then the statesy, andwr, are unitarily equivalent iff (31) holds.

If T = F(h) for some functior¥': o(h) — [0, 1], thenwr describes a free Fermi
gas with energy density per unit voluni&e).

The statevr is T-invariant iff 7' commutes withe!*” for all ¢. If the spectrum of
h is simple this means thdt = F'(h) for some functior¥': o(h) — [0, 1].

For any3, 1 € R, the Fermi-Dirac distributiomg,,(¢) = (1 + ¢?=»)~1in-
duces the uniqug-KMS state onCAR(h) for the dynamics o 9~#¢. This state,
which we denote byg,,, describes the free Fermi gas at thermal equilibrium in the
grand canonical ensemble with inverse temperatteiad chemical potential.

The GNS representation 6fAR () associated t@; can be explicitly computed
as follows. Fix a complex conjugatigh+— f onbh and extend it ta"_(h). Denote
by (2 the vacuum vector aniy the number operator if_ (). Set

Hor = I'-(h) @ I'_(h),
2y, =02 ® 92,
Twr(a(f)) = a((I =T)'2f) @ I + (-)N @ a*(T"/? ).
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The triple (Hw , 7wy, 20,) IS the GNS representation of the algebtaR(h) as-
sociated towr. (This representation was constructed in [AW] and if oftetiex!
Araki-Wyss representation.) i1 is 7-invariant, the correspondingr-Liouvillean
is
L=dr'(h)®1 —I®dIl(h).

If h has purely (absolutely) continuous spectrum so doesxcept for the simple
eigenvalud) corresponding to the vectdr,,,.. On the other hand) becomes a de-
generate eigenvalue as soonfakas some point spectrum. Thus (see the lecture
notes [Pi]) the ergodic properties efinvariant, gauge-invariant quasi-free states
can be described in terms of the spectrunk oThe stateur is ergodic iffh has no
eigenvalues. If. has purely absolutely continuous spectrum, theris mixing.

If wr is modular, then its modular operator is

log A, =dIN(s) @ I — I @ dI'(5),

wheres = log T'(I — T))~'. The corresponding modular conjugation/isp © ¥) =
u¥ @ ud, wherey = (—I)NIN+D/2,
Let # be thex-automorphism o€ AR(h) defined by

0(a(f)) = —a(f). (32)

A € CAR(h) is called even if(A) = A and odd ifg(A) = —A. Every element

A € CAR(h) can be written in a unique way as a sulm= AT + A~ whereA* =
(A+£6(A))/2is even/odd. The set of all even/odd elements is a vectopslesof
CAR(h) andCAR(bh) is a direct sum of these two subspaces. It follows from (29)
thatwr(A) = 0if Ais odd. Therefore one has-(A4) = wr(A™) and

wr 00 = wr. (33)

The subspace of even elements i§"asubalgebra o€ AR(h). This subalgebra
is called even CAR algebra and is denoted byR " (h). It is generated by

{a¥(f1) - a® (fan)In €N, f; € b}

The even CAR algebra plays an important role in physics.gtéserved by and?
and the pai{CAR™ (), 7) is aC*-dynamical system.
We denote the restriction ofz to CAR™ (h) by the same letter. In particular,
wg,, is the unique3-KMS state onCAR™ () for the dynamics o 9=+,
Let
A=a"(fi)---a®(fa),  B=a"(g1)-- a®(gm),

be two elements dfAR(h), wherem is even It follows from CAR that
A, (B < C D I(fir ™)),
i,j

where one can tak€' = (max(||f;||,]lg;]]))"™ 2. If the functions|(f, e*"g;)|
belong toL*(R, dt), then



Topics in non-equilibrium quantum statistical mechanics 9 2

/Oo I[A, 78 (B)]|| dt < oo. (34)

— 00

Lethy C b be a subspace such that for afy € by the functiont — (f,e't"g) is
integrable. LeDy = {a®(f1)---a”(f,)|n €N, f; € ho} and letO] be the even
subalgebra ob,. Then for4 € Oy andB € OF (34) holds. Iff, is dense irf), then
Oy is dense iICAR(h) andOj is dense infCAR™ ().

Let h; andh, be two Hilbert spaces, and &, , {2y, be the vaccua id"_(h;)
and I'_(h2). The exponential law for Fermions (see [BSZ] and [BR2], Exam
ple 5.2.20) states that there exists a unique unitary biap I'_(h; @ ha) —
I'_(h1) ® I'_(bh2) such that

U“th@hz = th ® tha

Ua(f @)U " =a(f) @1+ (-)N ®alg),
(35)
Ud*(fog)U ' =a*(f) @ I+ (-1)N @ a*(g),

Udl'(hy @ ho)U ™' =dl(hy) @ I + 1@ dI(hsy).

The presence of the factofs 1) in the above formulas complicates the description
of a system containing several reservoirs. The followirggdssion should help the
reader to understand its physical origin.

Consider two boxe®;, R, with one particle Hilbert spacds = L?(R;). De-
note byR the combined boke.,the disjoint union ofk, andR». The corresponding
one particle Hilbert space is= L?(R). Identifying the wave functiow; of an elec-
tron inR; with ¥; & 0 and similarly for an electron iR, we can replacé with the
direct sumh; @ bs.

Ry

Fig. 2. Thermal contact and open gate betw&enandRz.

Assume that each bdR; contains a single electron with wave functiahs(see
Fig. 2). If the boxes are in thermal contact, the two elecroan exchange energy,
but the first one will always stay ifR; and the second one iR,. Thus they are
distinguishable and the total wave function is jUst® ¥,. The situation is com-
pletely different if the electrons are free to move from oo& mto the other. In this
case, the electrons are indistinguishable and Pauli'sipierequires the total wave
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function to be antisymmetric—the total wave functiowisA ¥,. Generalizing this
argument to many electrons states we conclude that the depamntized Hilbert
space sl (h1) ® I'_(h2) in the case of thermal contact add (h; @ bh2) in the
other case. The exponential law provides a unitary bidgetween these two Hilbert
and one easily checks that

UV ANy = Ua*(wl D 0)0,*(0 D 'I/Q).th@m
= (" (W)(=D)N @ a* (¥2)) 92y, @ £,
=0 Q.

Denoting byOx,, Oz, and Or the CAR (or more appropriately the CAR
algebras of the boxeB,, R, andR, the algebra of the combined system in the case
of thermal contact i©%, ® Og,, while it is Ox in the other case. We emphasize
that the unitary mapy does not yield an isomorphism between these algeleas

UORU™* # Or, ® Og,.

This immediately follows from the observation thatI)¥ ¢ Oz, (unless, of
courseOg, is finite dimensional, see Subsection 6.3), which implies

Ua* (0@ W)U" = (=D @ a" () ¢ O, ® Or,.

Note in particular that*(¥;) ® I andI ® a*(¥2) commute whilea*(¥; @ 0) and
a*(0 @ ¥y) anticommute. The factqr-1)" is required in order fou*(¥;) ® I and
(—I)N ® a*(¥s) to anticommute.

5.2 Examples

Recall that the Pauli matrices are defined by

_fo1 _[o—i _[to
de =110l %%=lio|> %= |o-1|"

We seto. = (o, tio,)/2. Clearly,o? = o, = 02 = I ando,0, = —0y0, = io..

More generally, withr = (0, 0y, 0,) andu, v € R one has

(u-o)(v-o)=u-vi+i(uxv)-o.

Example 1Assume thatlimh = 1, i.e.,thath = C and thath is the operator of
multiplication by the real constant Then/_(h) = CeC = C? anddl'(h) = wN
with

01 I-o0,).

N =dr(1) = [OO] _ ;(

Moreover, one easily checks that
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=] ww=[0:

10

a*(1)a(l) = {0 0} L (1) = {8 ﬂ | (36)

which shows thaCAR(h) is the algebra o? x 2 matricesM,(C) and CAR™ (h)
its subalgebra of diagonal matrices. A self-adjoint opmrat< 7' < I on'H is
multiplication by a constant, 0 < v < 1. The associated stater on CAR(h) is
given by the density matrix

1—-~v0

[ 0 7} '

Example 2Assume thatlim h = n. Without loss of generality we can sgt= C”
and assume thétf; = w; f; for somew,; € R, where{f,} is the standard basis of
C™. Then,

I (h)=C"a&C"AC" @& (C")"" =~ Q) C?,
i=1
andCAR(h) is isomorphic to the algebra @f x 2" matricesMs- (C). This isomor-
phism is explicitly given by
a(fy) =~ (®g;1102) QoL ® (®?:j+11) )

forj =1,...,n. It follows that

@ (alfy) = 5 (511) © (-0 @ (81 11)

The map described by the above formulas is called the Jofidgner transforma-
tion. It is a useful tool in the study of quantum spin systesee([LMS, AB, Ar3]).
For 3, u € R, the quasi-free gauge-invariant state associat@tito(I +e”(h—1))~1
is given by the density matrix

e~ B(H—uN)
Tre—B(H—pN)’
with

n

H=dr(h) =Y wia(fi)alfy), N =dr() = a(f)a(f;).

j=1

Itis an instructive exercise to work out the thermodynarofdse finite dimensional
free Fermi gas following Section 3 in [Jo].
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Example 3In this example we will briefly discuss the finite dimensioapprox-
imation of a free Fermi gas. Assume thats a separable Hilbert space and let
A, C Dom h be an increasing sequence of finite dimensional subspabesal®
gebrasCAR(4,,) are identified with subalgebras 6fAR (). We also assume that
Un A, is denseirh. Let p,, be the orthogonal projection oty,. Seth,, = p, hp, and

let 7,, be the corresponding*-dynamics orCAR(4,, ). Sincep,, converges strongly
to I one has, forf € H,

Jim [la® (o f) —a® (N =0, lim |7 (a* (pnf)) = 7' (a® (N))]| = 0.

Letwr be the gauge-invariant quasi-free statelbkiR (h) associated t@'. LetT,, =
P Tpn. Then

lim wr, (a*(pnf)a(png)) = wr(a*(falg)).

Assume thaf:, andn are two faithfulwp-normal states and Int(u|n) be their
Araki relative entropy. Let:,, andn,, be the restrictions of andn to CAR™(4,,).
Then the function

n = Ent(pn|nn) = Tra, (pn(log pn —logn,)),

is monotone increasing and
lim Ent(un|1n) = Ent(u[n).
n—oo

Additional information about the last result can be foundBR2], Proposition
6.2.33.

Example 4The tight binding approximation for an electron in a singled band
of a d-dimensional (cubic) crystal is defined lyy= ¢?(Z?) with the translation
invariant Hamiltonian

(i) = 55 3 b() 37)

le—y|=1
where|z| = ), |z;|. In the sequeb, denotes the Kronecker delta functioruat
74,
Writing a, = a(d.), the second quantized energy and number operators are
given by

dr(h) = — atay,  dAI(I) =) ala,.

The Fouriertransforrﬂ?(k) =Y (z) ek mapsh unitarily onto

dk

6 = LQ([—W,TF]d, o)

).

S
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The set[—m, 7]¢ is the Brillouin zone of the crystal andis the quasi-momentum
of the electron. The Fourier transform diagonalizes the itanmian which becomes
multiplication by the band function(k) = % >, cos(k;). Thush has purely abso-
lutely continuous spectrum(h) = [—1, 1], and in particular is bounded.

A simple stationary phase argument shows that

(f.e"g) = O(™),

for arbitraryn providedf and g are smooth and vanish in a neighborhood of the
critical set{k | |[Ve(k)| = 0}. Since this set has Lebesgue measygeich functions
are dense ily. If f andg have bounded support i, then

(f.eg) = Ot~ ).

Example 5The tight binding approximation of a semi-infinite wire istaimed by
restricting the Hamiltonian (37), fat = 1, to the space of odd functionsc ¢*(Z)

and identifying such) with elements o¥?(Z. ), whereZ, = {1,2,---}. This is
clearly equivalent to imposing a Dirichlet boundary coiuglitatz = 0 and

1 oo
=5 32 (e Doers + (2115,
The Fourier-sine transformp(k) = > zez, ¥(@)sin(kx) maps unitarily/?(Z..)
onto the spacé?([0, 7], 24£) and the Hamiltonian becomes multiplicationday k.

By a simple change of variable = cos k we obtain the spectral representation of
the Hamiltoniar:

() # (r) = ry#(r),
where

#T: 2 ~8ICCOS
V#(r) = ||~y dlarccos(r),

maps unitarily the Fourier spadé€ ([0, 7], 24%) onto L?([—1, 1], dr). A straightfor-
ward integration by parts shows that

(f.e"g)=0(""),
if f#,g% € CJ((—1,1)). Amore careful analysis shows that
(f.eg) = O(t™*/3),

if f andg have bounded support i, .
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Example 6 The non-relativistic spinless Fermion of masss described in the po-
sition representation by the Hilbert spaté(R¢ dz) and the Hamiltoniarh =
—A/2m, whereA is the usual Laplacian ilR?. The cases of physical interest are
d = 1,2,3. In the momentum representation the Hilbert space of thenieer is
L?(R4, dk) and its Hamiltonian (which we will again denote hyis the operator of
multiplication by|k|? /2m.

The spectrum of: is purely absolutely continuous. Integration by partsdael
that

(f.eg)=0(""),

for arbitraryn providedf and g are smooth, compactly supported and vanish in a
neighborhood of the origin. Such functions are dendg ifi f, g € h are compactly
supported in the position representation, then

(f.e'g) = O(="?).

6 The simple electronic black-box (SEBB) model

In the second part of this lecture we shall study in detailtte-equilibrium statisti-
cal mechanics of the simplest non-trivial example of thetetaic black box model
introduced in [AJPP]. The electronic black-box model is aeyal, independent elec-
tron model for a localized quantum deviSeconnected tal/ electronic reservoirs
R1,--+,Rum. The device is called black-box since, according to thetedag ap-
proach introduced in Subsection 4.2, the thermodynamitiseo€oupled system is
largely independent of the internal structure of the devitee NESS and the steady
currents are completely determined by the Mgller morphidmchkvin our simple
model further reduces to the one-particle wave operator.

6.1 The model

The black-box itself is a two level system. Its Hilbert spacgl(s = C?, its algebra
of observables i©s = M,(C), and its Hamiltonian is

oo
HS: |:0€0:|.

The associated*-dynamics isrk (A) = eltfls Ae~1*Hs_ The black-box has a one-
parameter family of steady states with density matrices

1—~0
WSE|: 0’}/,_)/:|7 ’76[051]5

which we shall use as the reference states.
According to Example 1 of Subsection 5.2, we can also thinl§ afs a free
Fermi gas ove€, namelyHs = I'_(C), Hs = dI'(g¢) = eoa*(1)a(1) andOs =
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CAR(C). In this picture, the black-bo& can only accommodate a single Fermion
of energyeo. We denote byVs = a*(1)a(1) the corresponding number operator.
In physical termssS is a quantum dot without internal structure. We also not¢ tha
ws is the quasi-free gauge-invariant state generatetidy= . Therefore, we can
interprety as the occupation probability of the box.

Let hz be a Hilbert space antd; a self-adjoint operator oh. We setOr =

CAR(hr) and
T%(A) — (itdT(hR) g o—itdI'(hr)

The reference state of the reservaif, is the quasi-free gauge-invariant state as-
sociated to the radiation density operdlgy. We assume thdtz is bounded from
below and thaf’zx commutes withh .

To introduce the subreservoir structure we shall assunte tha

bR = @;‘\ilhRJ‘; hR = @;’\ilhR]W TR = @;bilTR]

The algebra of observables of thigh reservoir isOr, = CAR(hr;) and its dy-
namicstr, = = | Og, is generated by the Hamiltoniati"(hr,). The state
wr, = wr | Og, is the gauge-invariant quasi-free state associatézto If p;

is the orthogonal projection diz ;, thenNz, = dI'(p;) is the charge (or number)
operator associated to thieh reservoir. The total charge operator of the reservoir is
Nr =11, Ng,.

The algebra of observables of the joint systSm- R is O = Os ® Og, its
reference state is = ws ® wr, and its decoupled dynamicsig = 7s ® 7. Note
that

7_66 (A) — eitHgAefitHg,

where
Hy=Hs®I+I®dl(hg).

The junction between the bdxand the reservoiR ; works in the following way:
The box can make a transition from its ground state to itsteddtate by absorbing
an electron ofR; in statef;/||f;|. Reciprocally, the excited box can relax to its
ground state by emitting an electron in st#j| f;|| in R,. These processes have a
fixed rateA?|| f;]|?. More precisely, the junction is described by

AVj = A(a(1) @ a™(fj) +a™(1) @ a(fj)) ,

where A € R and thef; < b;. The normalization is fixed by the condition
>_; IIf;lI> = 1. The complete interaction is given by

M

AV =D AV = Aa(l) @ a*(f) + a*(1) ® a(f)),

j=1

wheref = @}ilfj. Note that “charge” is conserved at the junctioa,, V commutes
with the total number operatd¥ = Ns ® I + I ® Ng.
The full Hamiltonian is
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Hy=Hy+ \V,
and the corresponding*-dynamics

TL(A) = eltHx g eIt
is charge-preserving. In other words,commutes with the gauge group
ﬂt(A) = eitNAefitN,

and[H,, N] = 0. TheC*-dynamical systenfO, ) with its decoupled dynamics
7¢ and the reference state = ws ® wg is oursimple electronic black box model
(SEBB) This model is an example of the class of open quantum sysieswibed
in Section 4.

6.2 The fluxes

The heat flux observables have been defined in Subsectiofire3enerator ofr
is given byd;(-) = i[dI'(hr,),-]. Note thatV; € Domd; iff f; € Domhg,. If
V; € Dom §;, then the observable describing the heat flux o pis

®; = A6;(V;) = Ma(1) @ a”(ihg, f;) + a” (1) @ alihr, f})).

In a completely similar way we can define the charge currdme.rate of change of
the charge in the boX is
d .
7 (Vs)li=o =1 [dI"(H), Ns]
M (38)
= —Ai[Ns, V] = Ai [N, V] =Y Xi[Ng,, V],
j=1

which allows us to identify

Jj = Mi[Ng,,V]

= Ai[Ng,, V] = Ai[Ng,Vj] = Ma(1) ® a*(if;) + o™ (1) ® a(if;),

as the observable describing the charge current ofit;of

Let us make a brief comment concerning these definitiors [fis finite dimen-
sional, then the energy and the charg&gfare observables, given by the Hamilto-
niandI’(hz,) and the number operatdiz, = dI'(p;), and

d .
*ETi(df(hRj))|t:0 = Mi[dI'(hg,), Vj] = @,
d :
— AT = ML (), Vi] = .
When hr, becomes infinite dimensional (recall Example 3 in Subseci®),

dI'(hgr,) and Nz, are no longer observables. However, the flux observables
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andJ; are still well-defined and they are equal to the limit of thexfbservables
corresponding to finite-dimensional approximations.

The first law of thermodynamics (energy conservation) has lverified in Sub-
section 4.3—for any-invariant state; one has

M
> n(@;) =0.
j=1
The analogous statement for charge currents is proved milasiway. By (38),
S 7= 4 Vo)l
= Tdt -

and so for anyr,-invariant state; one has
M
> n(7;) =o. (39)
j=1

6.3 The equivalent free Fermi gas

In this subsection we shall show how to use the exponentiafda fermionic sys-
tems to map the SEBB model to a free Fermi gas. Let

M
h=Caobr=Co |Pbr, |. O=CAR(H), ho=chx,
j=1
and, with a slight abuse of notation, denotelbyi, - - - , fys the elements df canon-

ically associated with € C andf; € hz,. Then

is a finite rank, self-adjoint operator grand so is the sum = Zﬁl v;. We further
set
hx = ho + Av, (40)

and define the dynamical group
%i(A) = eitdF(hA)AefitdF(hk),
onO. Finally, we set )
T=Ts®Tr,
and denote by be the quasi-free gauge-invariant state’»generated by".

Theorem 5.LetU : I'_(C® hr) — I'_(C) ® I'_(hr) be the unitary map defined
by the exponential law (35) and sgtA) = U~ AU.
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(i) ¢ : O — O is ax-isomorphism.

(i) Forany \,t € Rone haspo 7{ = 7, 0 ¢.
(i) w=wo .
(v Forj=1,---, M, one has

Pj = ¢(®j) = —A(a”(ih; f;)a(l) + a*(1)a(ih; f5)),

and

Jj = 6(J;) = —Aa*(if;)a(1) + a*(1)a(ify))-

Proof. Clearly,¢ is ax-isomorphism fronB(I'_(C @ b)) ontoB(I'_(C) @ I'_(h)).
Using the canonical injectionr8 — h andhr — b we can identifyOs and Oz
with the subalgebras @ generated by(1 @ 0) and{a(0® f) | f € hr}. With this
identification, (35) gives

$la(e) ® I+ (=1)"* @ a(f)) = a(a) + a(f),
fora € Candf € hr. We conclude that
PARI) = A, (41)

for any A € Os. In particular, sincé = (—1)™s = [a(1),a*(1)] € Os, we have
#(b® I) = b. Relationb? = I yields¢(I @ a(f)) = ba(f). Sincelb, a(f)] = 0, we
conclude that fod € O

(A if A€ OF,
ol @A) = {bAifAe(’){Z, (42)

Where(97jt2 denote the even and odd parts @%. Equ. (41) and (42) show that

$(0) c O. SinceO = (Os,0%,0%), it follows from ¢(Os @ I) = Os,

oI ® OF) = OFf andg(b ® O5) = O thaté(0) > O. This proves Part (j).
From (35) we can see th&t "' HoU = dI'(ho) and from (41) and (42) that

U™'V;U = ¢(V;) = a(1)ba”(f;) + a* (1) ba(f;).
Since it also follows from CAR that
a(1)b=—a(l), a*(1)b=a*(1), (43)
we get
U™V;U = —a(1) a*(f;)+a* (1) a(fy) = —a(1) a*(fj)—a(f;) a*(1) = —dI(v)).
ThereforeU "' H,\U = dI'(h_) from which Part (ii) follows. A similar computa-
tion yields Part (iv).

It remains to prove Part (iii). Using the morphightrecall Equ. (32)) to express
the even and odd parts & € Ox, we can rewrite (41) and (42) as
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»(A® B)=A(B+6(B))/2+ Ab(B—6(B))/2,
from which we easily get
$(A® B) = Aa(l)a™(1)B + Aa*(1)a(1)0(B).

It follows from the factorization property (30) and the inzance property (33) of
quasi-free states that

0
By Theorem 5, the SEBB model can be equivalently describedhbyC*-
dynamical systeniO, 7_,) and the reference stater. The heat and charge flux
observables aré; and.J;. Since the change — —\ affects neither the model nor
the resultsin the sequel we will work with the systéif, 7,) and we will drop the
~. Hence, we will use th€*-algebra® = CAR(C & b ) andC*-dynamics

T;\(A) —_ eitdr(h)\)A/éle—itd]—‘(h;)7

with the reference state, the quasi-free gauge-invariant state generated’ by
Ts & T . The corresponding heat and charge flux observables are

®j = A(a”(ih; fj)a(1) + a*(L)a(ih; f;))
J; = Ma™(if;)a(l) + a*(Da(if;)).

The entropy production observable associated t® computed as follows. As-
sume thatforj = 1,--- , M one haker Tz, = Ker (I — Tr,) = {0} and set

s;=—logTr,(I —Tr,)™", SR = @)L, s;.

We also assume thét < v < 1 and setss = logvy(1 — )~ L. Lets = —ss @
sr. Under the above assumptions, the reference stagemodular and its modular
automorphism group is

Ui} (A) _ eitdF(s)AefitdF(s).
If f; € Dom(s;), then the entropy production observable is
o =—X(a"(f)a(iss) + a*(iss)a(f)) —A(a"(isr f)a(l) + a*(1)a(isr f)) . (44)

The entropy balance equation
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Ent(w o 7i|w) = /0 w(rs(0))ds,

holds and so, as in Subsection 3.2, the entropy producticengfNESSw, €
X+ (w,Ty) is non-negative. In fact, it is not difficult to show that thetrepy produc-
tion of w; is independent of; as long asy € (0, 1) (see Proposition 5.3 in [JP4]).
In the sequel, whenever we speak about the entropy prodygt®will assume that
~ = 1/2 and hence that

o=-X(a"(isrf)a(l) +a*(Da(isr f)). (45)

In particular, if
Tr I+ oPi(hr; _“f)),

thensj = —ﬁj(hRj - /Lj), and

;=

M
o== Bi(® — u;T;). (46)
j=1

We finish with the following remark. In the physics literatuthe Hamiltonian
(40) is sometimes called thigner-Weisskopf atofiivW] (see [JKP] for references
and additional information). The operators of this typeadse often calledrriedrich
Hamiltonians[Fr]. The point we wish to emphasize is that such Hamiltosiare
often used as toy models which allow for simple mathema#inalysis of physically
important phenomena.

6.4 Assumptions

In this subsection we describe a set of assumptions undehwie shall study the
thermodynamics of the SEBB model.

Assumption (SEBB1)hr, = L*((e—,e4),dr) for some—oco < e_ < e; < o0
andhr, is the operator of multiplication by.

The assumption (SEBBL) yields thgt = L?((e_, ey ),dr; CM) and thathr is
the operator of multiplication by. With a slight abuse of the notation we will some-
times denotéiz; andhr by r. Note that the spectrum @fr is purely absolutely
continuous and equal fe_, e ] with uniform multiplicity A/. With the shorthand
f=(f1, -+, fu) € hr, the Hamiltonian (40) acts ofi @ hr and has the form

ha=eo@®r+AM(L-)f+(f;-)D). (47)
Assumption (SEBB2)The functions

g;(t) = / "ot () 2 dr,
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belong toL}(R, dt).

Assumption (SEBB2) implies that the function

G(z) = /+ O g, - 1/000 g(t) e at,

r—=z

which is obviously analytic in the lower half-plari¢. = {z|Im 2z < 0}, is con-
tinuous and bounded on its closufe . We denote byG(r — io) the value of this
function atr € R.

Assumption (SEBB3)Forj = 1,--- , M, the generatarl’z, is the operator of mul-
tiplication by a continuous functiop; () such that < p;(r) < 1forr € (e_,e4).

Moreover, if )
_ pi(r
)= 7205
we assume that;(r) f;(r) € L?((e—,e4),dr).

Assumption (SEBB3) ensures that the reference statef the reservoir is mod-
ular. The functiorp;(r) is the energy density of theth reservoir. The second part of
this assumption ensures that the entropy production oakkry44) is well defined.

The study of SEBB model depends critically on the spectrdlsmattering prop-
erties ofh . Our final assumption will ensure that Assumption (S) of ®akisn 3.4
holds and will allow us to use a simple scattering approadudy SEBB.

Assumption (SEBB4)eq € (e—, e ) and|f(go)| # 0.

We set

- : o feNP?
F(r)=¢eo —r — NG(r — io) :5077"7)\2/6 mdr/. (48)

By a well-known result in harmonic analysis (see, e.g., fdany harmonic analysis
textbook),
Im F(r) = Nx|f(r)]?, (49)

for r € (e_,es). We also mention that for any € hr = L2((e_, ey ),dr; CM),
the function o )
€+ .
TH/ fgr) 90) 40
e. T —7T+10

isalso inhr.

The main spectral and scattering theoretic results,oare given in the following
Theorem which is an easy consequence of the techniqueshser [Ja]. Its proof
can be found in [JKP].
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Theorem 6. Suppose that AssumptiofEBB1), (SEBB2and(SEBB4)hold. Then
there exists a constant > 0 such that, for any) < |\| < A:

(i) The spectrum ok, is purely absolutely continuous and equal¢o, e ].
(i) The wave operators . .

Wy =s — limeltho e7ithx
t—*doo

exist and are complete, i.Ran Wy = hr andWi : h — hg are unitary.
Moreover, ify = a @ g € b, then

“fe) g0 L,
=y mdr]f(r). (50)

(W_y)(r) = g(r) = AF(r)~" la
Needless to say, the thermodynamics of the SEBB model catudeed under
much more general assumptions than (SEBB1)-(SEBB4). Hervévese assump-
tions allow us to describe the results of [AJPP] with the teasnber of technicali-
ties.
Parenthetically, we note that the SEBB model is obvioushetreversal invari-
ant. Write f;(r) = €% ()| f;(r)|, and let

j(O{ D (glv e aglbf)) =ad (e2i01g17 e ae2i0MgM)7
where~ denotes the usual complex conjugation. Then the map
o(A) = LG)ALG™).

is a time reversal and is time reversal invariant.

Finally, as an example, consider a concrete SEBB model wéeeh reservoir
is a semi-infinite wire in the tight-binding approximatioestribed in Example 5 of
Subsection 5.2. Thus, for eaghhr, = (*(Zy) andhg, is the discrete Laplacian
on Z with Dirichlet boundary condition &i. Choosingf; = ¢; we obtain, in the
spectral representation bz .,

br, = L*((—1,1),dr),
hf/zj =T,
e =20 -

Thus, Assumptions (SEBB1) and (SEBB4) hold. Since, asoco, one has

-1
. 2M
[ et R ar = 2 a0 = o),
-1

whereJ; denotes a Bessel function of the first kind, Assumption (SEBB also
satisfied. Hence, #fy € (—1, 1), then the conclusions of Theorem 6 hold. In fact one
can show that in this case

1 — |eg

A=\
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7 Thermodynamics of the SEBB model

Throughout this and the next section we will assume that igdions (SEBB1)-
(SEBB4) hold.

7.1 Non-equilibrium steady states

In this subsection we show that the SEBB model has a uniqueshlk$ which does
not depend on the choice of the initial state N,,. Recall that the reference state
of the SEBB model is the quasi-free gauge-invariant stateigged by’ = Ts®Txw,
whereTs = € (0,1) andTr = @;p; (7).

Theorem 7.Let A > 0 be the constant introduced in Theorem 6. Then, for any real
A such thaD < |A] < A the following hold:

(i) The limit
af (A) = lim 75" o 74 (A), (51)

t—o0o

exists for allA € O. Moreover,Ranay = Og andc«; is an isomorphism
between th&€™*-dynamical system®, ) and (Ox, mr).
(i) Let wyy = wr o af. Then

lim no 7y = wxs,
t—oo

forall n € N,.
(iii) wx+ is the gauge-invariant quasi-free state &ngenerated by

T+ = WiTRW_,
whereW_ is the wave operator of Theorem 6.

Proof. Recall thatr{ is a group of Bogoliubov automorphisms; (a*(f)) =
a” (e'*™ f). Hence, for any observable of the form

A=a® (1) a (¢n), (52)
Tgt o Tf\(A) — a# (e_ithoeith)‘wl) . a#(e—ithoeith)\wn).
It follows from Theorem 6 that

lim 757" o r{(A) = a¥ (W_ypn) -~ a? (W_pn).

Since the linear span of set of elements of the form (52) isé&mO, the limit (51)
exists and is given by the Bogoliubov morphisi (™ (f)) = a¥ (W_f). Since
W_ is a unitary operator betweénandhz, Rana = CAR(hz) = O, which
proves Part (i).

Sincehr has purely absolutely continuous spectrum, it follows frmumdiscus-
sion of quasi-free states in Subsection 5.1 thatis mixing for 7. Part (ii) is thus a
restatement of Proposition 5.



44 Walter ASCHBACHER et al.
If A=a*(¢p)---a*(¥1)a(d1) - - - a(¢sn) is an element 0O, then

W (A) = wr (@ (W) - a* (Wb )a(W-61) -+ a(V_ )
On,m det {(W_¢pi, TRW_1);)}
= 6n,m det {(¢ia T+wj)}

and Part (iii) follows. O

7.2 The Hilbert-Schmidt condition

Sincew andw, 4 are factor states, they are either quasi-equivaléft & N, )
or disjoint (W, N N,,,, = (). SinceKerT' = Ker (I —T) = {0}, we also have
Ker T} = Ker (I — T+) = {0}, and sav andw, 4 are quasi-equivalent iff they are
unitarily equivalent.

Leta > 0. Afunctionh : (e—, e;) — Cis a-Holder continuous if there exists a
constantC such that for ali-, v’ € (e_, e4), |h(r) — h(r")| < C|r — r'|*.

Theorem 8.Assume that all the densitigg(r) are the same and equal ta(r).
Assume further that the functiopg-)'/? and(1— p(r))'/? are a-Hélder continuous
for somex > 1/2. Then the operators

(THY?—1Y2 and (I -T,)Y% — (I —T)Y?

are Hilbert-Schmidt. In particular, the reference stateand the NES& . are uni-
tarily equivalent anEp(wx+) = 0.

Remark. We will prove this theorem in Appendix 9.2. Although the Hétcconti-
nuity assumption is certainly not optimal, it covers mostesaof interest and allows
for a technically simple proof.

Theorem 8 requires a comment. By the general principlesatisital mechan-
ics, one expects thdlp(wy+) = 0 if and only if all the reservoirs are ithermal
equilibrium at the same inverse temperatyteand chemical potentigl (see Sec-
tion 4.3 in [JP4]). This is not the case in the SEBB model bsedhe perturbations
V; are chosen in such a special way that the coupled dynamic#l igiven by a
Bogoliubov automorphism. Following the strategy of [JR#Hje can show that the
Planck lawp(r) = (1 + ¢?("=#))~1 can be deduced from the stability requirement
Ep(wx+) = 0 for a more general class of interactiovis For reasons of space we
will not discuss this subject in detail in these lecture sdthe interested reader may
consult [AJPP]).

We will see below that the entropy production of the SEBB niadenon-
vanishing whenever the density operators of the reseraogrsiot identical.

7.3 The heat and charge fluxes

Recall that the observables describing heat and chargentarmut of thej-th reser-
voir are
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®; = Ma™(irf;)a(1) + a”(Da(irf;)),
Jj = Ma*(if)a(l) + a*(1)a(if;)).
The expectation of the currents in the stajg. are thus
Wit (95) = Dwrt (a”(rf;)a(l) — a*(Lalrf;))
= 2M\Im (rf;, T¢1)
= 2AIm (W_Tfj, TRW_l),

and
wr(T) = wag (a” (f5)a(l) — a*(La(f;))
= 2AIm (f;,T41)
= 2M\Im (W_ f;, TrW_1).
Setting

Qm/wﬂmmkw,

_r'—r+io

it easily follows from Formula (50) thatfor =1,--- , M,

(TrW_1)(r) = ,\Pk(F)(izS( pr(r)fi(r)

(W_rfij)k(r) =0k rfi(r) + A2

from which we obtain

€+ _ B
(W_Tfj,TRW_ )\Z/ |fk | pk [F(T)ékj‘f')\QGj(Tﬂ dr
k=1 €e_
From Equ. (49) we havém F'(r) = —X\2x|f(r)|*> and similarlyIm G;(r) =
J

7r| f;(r)|*. Hence,

s (@ f%vz/ UOLOD (05, - 150P) ar

k=1 €e_

Since|f|?> = Y, | fx|?, the last formula can be rewritten as

s (@ Jmﬁj’m|m P =) s (69)

=1 €e_

In a completely similar way one obtains

@ =22 Y [ IOPAOR 0 - 69

k=1 e_
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An immediate consequence of Formulas (53) and (54) is thidteafluxes vanish
if p1 = --- = ppr. Note also the antisymmetry inand; of the integrands which
ensures that the conservation laws

ZWA+ ZWH Jj) =
hold.

7.4 Entropy production

By the Assumption (SEBB3) the entropy production obseralbthe SEBB model
is well defined and is given by Equ. (45) which we rewrite as

:—)\Z “(is; f;)a(1) + a*(D)a(is; f;)) - (55)

Proceeding as in the previous section we obtain

M
war(0) = =20 Tm (Wos, f;, TRW_1),

j=1

which yields

w)\Jr 7270\4 Z /e+ |f] | |fk )| (sj(r)fsk( ))Pk( )d

J,k=1

Finally, symmetrizing the sum ovgrandk we get
€+
(o fm“Z / BTE (3 0) = 51061 () 301

Sincep; = (1 +e% )~ ! is a strictly decreasing function ef,
(s5(r) = se(r))(pr(r) — p;(r)) 20,
with equality if and only ifpx (1) = p,(r). We summarize:

Theorem 9. The entropy production af,  is

ori(o fﬂvz/e* B (3 0) — 54069 () — 1)

7,k=1

In particular, Ep(w;) > 0 (something we already know from the general principles)
andEp(wy) =0ifandonlyifp; = --- = pps.
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Sincew andw) + are factor states, they are either quasi-equivalent asidisBy
Theorem 2, ifEp(wy+) > 0, thenw, is notw-normal. Hence, Theorem 9 implies
that if the densitiep; are not all equal, then the reference statnd the NESS),
are disjoint states.

Until the end of this section we will assume that the energysitg of the;j-th

reservoir is 1

1+ eBilr—ny)’
whereg; is the inverse temperature apg € R is the chemical potential of thgth
reservoir. Then, by (46Ep(wx4+ ) can be written as

PBjuj (r) =

Ep (WA-Q—) = Epheat (w/\+) + Epcharge (WA-Q— ) )

where

Epheat w>\+ Z ﬂj w>\+

is interpreted as the entropy production due to the heatdlard

Epcharge WA+ Z ﬂj W+ ~7J )
j=1

as the entropy production due to the electric currents.

7.5 Equilibrium correlation functions

In this subsection we compute the integrated current-otio@relation functions
1T )
L,(A,B) = lim 5 wp+ (T3 (A)B) dt,
-T

whereA and B are heat or charge flux observables and denotes the NESS,
in the equilibrium cas@;, = --- = pyr = p. To do this, note thab, = dI'(y;) and
J, = dI'(j;) where

Spl = i[th,)\'U] = 7i[hA; hR]‘]a
jl = l[pja )\’U] = 71[hAapj]7

are finite rank operators. We will only consides(®,, $+), the other cases are com-
pletely similar.
Using the CAR, Formula (29) and the fact that, (¢;) = 0, one easily shows
that
Wor (T5(@)P1) = Tr (The™ je™ " (1 — T )py).

Since d
elth)\ —ithy — 7_elth>\hR‘eflth>\,
J

e
Pj dt
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the integration can be explicitly performed and we have

T

1 . .

Ly(®j,y) = = lim STr (T ™™ hy,e (1 — Ty )pr)
o -T

Writing €' hy e 1ty = elthre=lthopg elthoe=itha and using the fact thagy, is
finite rank, we see that the limit exists and can be exprességhins of the wave
operatord¥V. as

1
Lp(®j,Px) = 5 {Tr (T WZher,W_(I — T4 )¢pr)
— T (T Wihgr,Wi(I = T)er)} -
The intertwining property of the wave operators gives
Ty = WZp(hgr)W- = p(hx) = Wip(hg)W,
from which we obtain
1 *
Ly(®j, k) = 5Tr (Tr(I = TR)hw,;(W-prWZ = Wi puW1)),
with Tr = p(hg). Time reversal invariance further gives
Wi =jW_j, PR = —k,
and so
1 . .
L,(®5,P1) = §TF(TR(I —TR)hgr, (W_pp W +iW_pp W™ j))
=Tr (TR(I - TR)hR] W,@ij)
The last trace is easily evaluated (use the formpila= Ai[hz,, v] and follow the
steps of the computation in Subsection 7.3). The result is

r2dr

(3,21 = 208 150 (A0 = 8l 7] o)1 o)

Ly(J; 1) = *2“4/6Tfj<r>|2 (76 = 85l FIP] p(r) (A = P

(@3, = =28 10O A0 = 8l 0] o)1 = o) s
LT3 0) = =23 1500 [lr) P = 8l SO o)1 = o) s
(56)

Note the following symmetries:
Lp(®j, i) = Lp(Pr, D;),
Lp(jjvjk) = Lp(jkajj)a (57)
Lp(éjvjk) = Lp(jkaéj)'
Note also thal ,(®;, Px) < 0andL,(J;, Jix) < 0for j # k while L,(®;,$;) > 0
andL,(J;,J;) > 0.
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7.6 Onsager relations. Kubo formulas.

Let B.q andpeq be given equilibrium values of the inverse temperature hadhem-
ical potential. The affinities (thermodynamic forces) aggted to the currents;
andJ; are

Xj = Beq - ﬁjv YJ = Bjﬂj - ﬁeqﬂeq-

Indeed, it follows from the conservations laws (12) and ¢Ba}

p(wa+) Z (X wat (@) + Y wrg (Tj)) -
j=1

Since
1

PBjn; (T) - 1+ eﬁeq(7'_ﬂeq)_(xj7'+yj) ’

we have
Ox, Pp;u; (1) x=y =0 = Okj p(r)(1 — p(r)) 7,
Oy, P;1; (T)|x=y =0 = dnj p(r)(1 = p(r)),

wherep = pg, .., - Using these formulas, and explicit differentiation of #teady
currents (53) and (54) and comparison with (56) lead to

Ix,wWr+(Pj)|x=y=0 = L,(P;, ),
Oy, wrt (D)) x=y=0 = Lp(P;, Ti),
Oxywrt (T;) | x=y =0 = L,(T;, Pr),
5kak+(u7a)|x y=0=1L (s7avu7k)v

which are theKubo Fluctuation-Dissipation Formula3he symmetry (57) gives the
Onsager reciprocity relations

Ox,;wWx+(Pr)|x=y=0 = Ox,wWx+(®P;)|x=y=o0,
Oy, wxr + (k)| x=y=0 = Oy, wxr +(Jj)| x=v =0,

Oy;wr+(Pr)| x=v=0 = Ix,wxr+(Tj)| x=y=0-

The fact thatL,(®;, ;) > 0 andL,(J;,J;) > 0 while L,(®;,9;) < 0 and
L,(J;,Jx) < 0for j # k means that increasing a force results in an increase of the
conjugated current and a decrease of the other currentsisThot only true in the
linear regime. Direct differentiation of (53) and (54) ylsl
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oionsto) =285 [ TP 5 )0 = s (DS 2 0,
Onons() =23y [ OO s (1)1 s () s = 0,
O, (8) = =20 [P D300 )1 s () s <0
Oyiior +(75) = =203 ORI s (1)1 s (1) sz <0

Note that these derivatives do not depend on the refereaimssif the reservoif8
forj # k.

8 FGR thermodynamics of the SEBB model

Forj=1,---, M, we set
~ o it 2
3(t) = / e s (1) £ ()2 dr-

In addition to (SEBB1)-(SEBB4) in this section we will asseim

Assumption (SEBB5)g;(t) € L'(R,d¢t) forj =1,--- , M.

8.1 The weak coupling limit

In this subsection we study the dynamics restricted to thallssystem on the van
Hove time scale/\°.

Recall that by Theorem 5 the algebra of observalilgsof the small system
is the 4-dimensional subalgebra &f = CAR(C @ hr) generated by:(1). It is
the full matrix algebra of the subspage C I'_(C @ hx) generated by the vectors
{22,a(1)$2}. Inthis basis, the Hamiltonian and the reference statestditiall system

are
|00 _|1—~0
Gl (B
Let A € Og be an observable of the small system. We will study the expiect

values )
w(r/™ (4)), (58)

as\ — 0.1f A = a#(1), then (58) vanishes, so we need only to consider the
Abelian 2-dimensional even subalgetifd C Os. Sincea*(1)a(l) = Ns and
a(l)a*(1) = I — Ng, it suffices to consideA = Ng. In this case we have
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wo T/t\//\Q (Ns) = w(a*(eithA/AQ1)a(eith*/”\21))
= (/N1 (y @ Tr)et /A1), (59)

Using the projectiom; on the Hilbert spacgr; of the j-th reservoir we can rewrite
this expression as

M
2 . 2 . 2 s 2
wOT;\/)\ (NS) :’}/|(1,elth>\//\ 1)|2+ § (pjelth)‘/A 17T’[szjelth)‘//\ 1)
i=1

Theorem 10.Assume that Assumptio(B8EBB1)(SEBB5)hold.

(i) For anyt > 0,

lim |(1, /X )[2 = em2mil 0l (60)

(i) Foranyt > 0andj =1,---, M,

_ 2
lim _eithA/AQLT ‘ _eithA/A21 _ |fy(50>| (e (176727rt|f(60)|2)_
A—0 (pj R;Pj ) |f(50)|2 p]( 0)

(61)

The proof of Theorem 10 is not difficult—for Part (i) see [D&1L,], and for Part (ii)
[Da2]. These proofs use the regularity Assumption (SEBBB&)alternative proof of
Theorem 10, based on the explicit form of the wave operdfor can be found in
[JKP].
Theorem 10 implies that
¥(t) = limwo T;/)‘Q (Ns)

A—0
M 2
— 27t f(e0)|? L —27t|f(e0)|? | fi (=0l _
h w1 )3 e
from which we easily conclude that for all € Os one has

;\irr%)w o T/t\/)‘2 (A) = Tr(ws(t)A),

ws(t) = [1 ~ ) v?t)] |

According to the general theory described in Section 4.5lee lzave

where

ws (t) = tKs ws,

whereKg is the QMS generator in the Schrédinger picture. We shall digeuss its
restriction to the algebra of diagoriak 2-matrices. In the basis

Bl
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of this subalgebra we obtain the matrix representation

B pi(eo) 1= pj(eo)
s —ar 3o [0 (o)

In the Heisenberg picture we have
I UX(A) = Tr(ws e 1A
lim ws o7y (A) = Tr(ws e )
whereKy is related taK'g by the duality
TI‘(Ks(ws)A) = TI‘(wsKH(A))

The restriction of(y; to the subalgebra of diagorak 2-matrices has the following
matrix representation relative to the basis (62),

—p;(0) p;j(€0)
KH—QW;|fJ €o)| { —pjeo) —(1 = pj(e0))]| "

We stress thak(s and Ky are the diagonal parts of the full Davies generators in the
Schrddinger and Heisenberg pictures discussed in theréecties [D1].

As we have discussed in Section 4.5, an important propettyeofenerator&’s
and Ky is the decomposition

M M
Ks=) Ks, Ku =) Kuj,
i=1 =1

where K ; and Ky ; are the generators describing interactionSovith the j-th
reservoir only. Explicitly,

- 2 |—pileo) 1—pj(eo)
Ks.; = 2| fj(€0)| [ P?(Eog -1 pﬂj(SO»] ,

fous =2l [ 0026

Finally, we note that

)2 [t =rileo) O
wSJrfhmwS Z| l ’ .

0 pj(€o)

ws+ is the NESS on the Fermi Golden Rule time scale: for any olabéswi of the
small system,

lim lim wo 7‘/\//\2 (A) = Tr(ws+A) = wsy(A).

t—oo A—0

In the sequel we will refer toos as the FGR NESS.
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8.2 Historical digression—Einstein’s derivation of the Panck law

Einstein’s paper [Ei], published in 1917, has played an irtgrd role in the historical
development of quantum mechanics and quantum field theotlyid paper Einstein
made some deep insights into the nature of interaction ketwadiation and matter
which have led him to a new derivation of the Planck law. Fer ltistory of these
early developments the interested reader may consult [Pa].

The original Einstein argument can be paraphrased as fell@ensider a two-
level quantum syster§ with energy level$) andeg, which is in equilibrium with
a radiation field reservoir with energy densityr). Due to the interaction with the
reservoir, the syster§ will make constant transitions between the energy ledels
andeg. Einsteinconjecturedhat the corresponding transition rates (transition prob-
abilities per unit time) have the form

k(g0,0) = A, (1 — p(eo)), k(0,e0) = Beyp(co),

whereA,, andB,, are the coefficients which depend on the mechanics of the inte
action. (Of course, in 1917 Einstein considered the bos@siervoir (the light)—in
this case in the first formula one has- p(eg) instead ofl — p(z¢)). These formulas
are the celebrated Einstein/s and B laws. Letp, andp., be probabilities that in
equilibrium the small system has energieande, respectively. IfS is in thermal
equilibrium at inverse temperatuge then by the Gibbs postulate,

o= (1+ efﬁm)fl7 Pey = efﬁm(l + e,ﬁa}),l.
The equilibrium condition
k(oa 50)1_)0 = k(EOa O)ﬁéov

yields

A
pleo) = Z(1 = pleo))e™ .
€0
In 1917 Einstein naturally could not compute the coeffigeht andB.,. However,
if Ac,/Be:, = 1 for all g, then the above relation yields the Planck law for energy
density of the free fermionic reservoir in thermal equiliion,

1
p(eo0) = 1+ efeo”
In his paper Einstein points out that to compute the numkevalae of A, and B,
one would need an exact [quantum] theory of electro-dynah@od mechanical
processes.

The quantum theory of mechanical processes was developibe ih920’s by
Schrddinger, Heisenberg, Jordan, Dirac and others. In,I32&c extended quantum
theory to electrodynamical processes and computed thdigierfs A., and B,
from the first principles of quantum theory. Dirac’s semipaper [Di] marked the
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birth of quantum field theory. To computé., and B., Dirac developed the so-
called time-dependent perturbation theory, which has desussed in lecture notes
[D1, JKP] (see also Chapter XXI in [Mes], or any book on quamtmechanics).
In his 1949 Chicago lecture notes [Fer] Fermi called thedfsimulas of Dirac’s
theorythe Golden Rulgand since then they have been calleel Fermi Golden Rule

In this section we have described the mathematically rigpFeermi Golden Rule
theory of the SEBB model. In this context Dirac’s theory reglsito the computation
of Kg and Ky since the matrix elements of these operators give the tramgrob-
abilities k(=9,0) and k(0, ). In particular, in the case of a single reservoir with
energy density(r),

Aey = B, = 27T|f(€())|2.

Einstein’s argument can be rephrased as follows: if theggraensityp is such that

wst = e_BHS/Tr(e_BHS) =(1+ e_ﬁao)_l Ll) e%sg:| )

for all ¢g (namelyHs), then

1

p(eo) = 11 ofeo”

8.3 FGR fluxes, entropy production and Kubo formulas

Any diagonal observabld € Of of the small system is a function of the Hamil-
tonian Hs. We identify such an observable with a functign {0,¢0} — R. Occa-
sionally, we will writeg as a column vector with component®) andg(s). In the
sequel we will use such identifications without further coemi A vectow is called

a probability vector ifv(0) > 0, v(gg) > 0 andv(0) + v(g9) = 1. The diagonal
part of any density matrix defines a probability vector. Waate the probability
vector associated to FGR NESG by the same letter. Similarly, to a probability
vector one uniquely associates a diagonal density matrith ¥Wese conventions,
the Hamiltonian and the number operator of the small system a

Hs = oa*(1)a(1) = [2)] . Ns=a*(l)a(l) = m .

The Fermi Golden Rule (FGR) heat and charge flux observabdes a

Pigr ; = Kn j(Hs) = 27T€o|fj(50)|2 [(1pj(;?250))} ’

Jrgr.j = K j(Ns) = 27| f;(z0)? [(1pj(;0'250))

The steady heat and the charge currents in the FGR NESS arelgiv
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Z | fi 5|0f|€|0f’€|250)| o(pj(e0) — pr(co0)),

WS+ éfgr J
(63)

WSJr(jfgrj =2r Z |f] Erf|( |§7§€0)| (p]‘(Eo) 7pk’(50))'

The conservation laws

M M
> wsi (Prges) =0, Y wsy(Trgrj) =0
j=1

Jj=1

follow from the definition of the fluxes and the relatidf; (ws+) = 0. Of course,
they also follow easily from the above explicit formulas.
Until the end of this subsection we will assume that

N 1
p] (T) - 1 + e[}j(’l“*,u,j) :

Using Equ. (63), we can also compute the expectation of ttregnproduction
in the FGR NES%s . The natural extension of the definition (25) is

M

Otgr = — Y By (Prgej — 11 Trar ) »

J=1

from which we get

ws(0tg) =21 Y |fj(€r}LsL§7§€0)| (pr(c0) — pi(0))Bj(e0 — pj)-  (64)
jk=1

Writing
pileo) V.
T— (e 0 H):

and symmetrizing the sum in Equ. (64) we obtain

= log

(o) = 3" 1 Eff'( 'f’“|§€°" (r(20) — p3(€0))(s; — 51),
J,k=1

which is non-negative sincg (=) is a strictly decreasing function ef. The FGR
entropy production vanishesiff al}’s are the same. Note however that this condition
does not require that all the’s and;’s are the same.

Let B.q anducq be given equilibrium values of the inverse temperature éuedc
ical potential, and

_ﬁeq(Hs—pLeq)/Tr(e—ﬁeq(HS—Meq)) _ (1 + e_ﬁeq&‘o)—l 0

u}Seq =€ 0 (1 +eﬁeq50)—1 )
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the corresponding NESS. As in Subsection 7.6, the affirtiesmodynamic forces)
areX; = foq — B; andY; = 511 — Beqlteq- A Simple computation yields the FGR
Onsager reciprocity relations

Ox,;ws+ (Prgr.k) | x=y =0 = Ox,Ws+ (Prgr,j) | x=y=o0,
Oy, ws+ (Ttgr k)| x=v =0 = Oy, ws+ (Ttgr,i)| x=v =0, (65)
Ov,ws+(Pigr k)| x=y=0 = Ox,Ws+(Ttgr,i) | x=y =0
We set -
Lt (A, B) = / Wseq(e M (A)B) dt,
0

whereA and B are the FGR heat or charge flux observables. Explicit contiputa
yield the FGR Kubo formulas

Ox,ws+(Ptgr,j) | x=vy=0 = Ltgr(Prgr,j> Prar,k),

) (Prgr g, Trgrk),
Ox,ws+(Ttgr,j)| x=vy =0 = Ltgr(Tter,j Pror, k),
Oy, ws+(Tter,j)| x=v =0 = Ltgr(Tter,j» Trer,k)-

(

akaSJr(Qngr,j |X:Y:O = Lfgr (66)
(
(

8.4 From microscopic to FGR thermodynamics

At the end of Subsection 4.5 we have briefly discussed theagassom the mi-
croscopic to the FGR thermodynamics. We now return to tHigesti in the context
of the SEBB model. The next theorem is a mathematically dgsiversion of the
heuristic statement that the FGR thermodynamics is thatiinsttrivial contribution
(in \) to the microscopic thermodynamics.

Theorem 11. (i) For any diagonal observabld € Ogs,

lim wr+(A4) = ws+(A).
(i) For j =1,---, M,
lim Awny (8)) = wet (Preg),  im AP0y () = wet (Jrers)-

(iii) Let s; =log p,(c0)/(1 — p;j(e0)) and define the FGR entropy production by
1= pj(eo)

M . (5)
afgr%Zifj(eo)st[ pileo ]
i=1

Then
lim A Ep(wat) = ws (0rer).
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The proof of this theorem is an integration exercise. We nailrict ourselves to
an outline of the proof of Part (i) and several comments.Aet Ngs = a*(1)a(1).
Then

M e+ | £ (r)|2
ore() = oz = > [T HOE g,

and

M
| fi(e0)l?
ws+(A) = pi(eg).
=2 it
Hence, to prove Part (i) we need to show that

(AR P
i FP PO = T

By Assumption (SEBB2)R(r) = Re G(r — io) andr|f(r)|*> = Im G(r — io) are
bounded continuous functions. The same is trugfér) by Assumption (SEBB3).
Since

(g0)-

F(r)y=ey—1r— )\2R(7‘) + i)\27r|f(r)|2,
we have

SRR e (00, (r) )
| FpPird A (20 + AR + 2N "

Using the above-mentioned continuity and boundednesseptiep it is not hard to
show that

RN
i [ e

dr
r—eco+ AR(r))? + w2 f(r)[*

= pj(€0)lfj(e0)|* Jim A* / (

. b dr
= pi20)lfj(=0)|” lim A* /_Oo 2+ 2 eo) !
= |fj(€0)|2ﬁ"(€o)-

I fe)2

The proofs of Parts (ii) and (iii) are similar. Clearly, um@elditional regularity as-
sumptions one can get information on the rate of convergenBarts (i)-(iii). Fi-
nally, it is not difficult to show, using the Kubo formulas debed in Subsection 7.6
and 8.3, that

lim A"2L,(A, B) = Lig (Atgr, Biar)s

where A, B are the microscopic heat or charge flux observablesAand By, are
their FGR counterparts.



58 Walter ASCHBACHER et al.

9 Appendix

9.1 Structural theorems
Proof of Theorem 1

Recall thatr,,(0)” is the Banach space dualdf,. If A € © andA € 7,,(0)" is a
weak- accumulation point of the net

t [ty as

t > 0, it follows from the asymptotic abelianness in mean that 7, (0)’. Since
w is a factor state we have,(0)' N7, (0)” = CI and therefore, for any € NV,
one has

n(A) = w(A). (67)
Lety,v € N, anduy € X4 (u, 7v). Lett, — oo be a net such that

1 [t
i [ o (4)ds = s (4),
0

a Ly

forall A € O. Passing to a subnet, we may also assume that far all® and some
vy € Xp(v,1v),

1 [t
hmt—/ voty(A)ds = vy (A).
0

* lo

By the Banach-Alaoglu theorem, for any € O there exists a subne(A) of the
nett, andA# < 7, (0)" such that, for alh € A,

t(A)
i 5 [ e (4) s = n(a%)

Hence,uy (A) = u(A#) andv, (A) = v(A#). By (67) we also haveu(A#) =
w(A#) = v(A#) and sou (A) = vy (A). We conclude that, = v, and that

Yi(p,mv) C 2y (v, 1v).
By symmetry, the reverse inclusion also holds and
Yy 1v) = 2 (w,7v)

forallpe M,. O
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Proof of Theorem 3

To prove this theorem we use the correspondence betwawmrmal states and el-
ements of the standard coffeobtained fromw (see Proposition 37 in [Pi]); this is
possible sinces is modular by assumption.

Note that ifKer Ly, # {0}, then there is an-normal,ry -invariant state;. By
Theorem 1.5, (w,7v) = X4 (n,7v) and obviouslyX', (n, 7v) = {n}. Two non-
zero elementsiiKer Ly therefore yield the same vector state and are represented by
the same vector in the standard care, Ker Ly NP is a one-dimensional half-line.
Recall that any € b, can be uniquely decomposed as

¢=0C —C+ids — iy,
with ¢; in P. Sincee'*~v preserves the standard comBlv( = ¢ iff €LV (; = (¢
foralli (i.e.,(; € Ker Ly NP for all i). Hence Ker Ly is one-dimensional and Part
(i) follows.

The proof of Part (ii) is simple. Any NES§ € X, (w,7y) can be uniquely
decomposed ag, + ns wheren,, < w andns L w. Sincen is my -invariant,n,, and
7, are alsory -invariant. Therefore,, is represented by a vectoin Ker Ly NP. If
Ker Ly = {0}, thenn,, = 0 andn L w.

It remains to prove Part (iii) (see Theorem 44 in the lectwotea [Pi]). Letp €
Ker Ly be a separating vector faR,,. Let B € «,,(O)’ be such thalf By|| = 1 and
letv be the vector state associated?@, vz (-) = (By, -By). ForanyA € 7,,(0),

1

ot t
%/ v(ry(A)) ds = g/ (Byp, eV, (A)e 1V Byp) ds
0 0

1
= (E/ e v B*B o ds, ﬁw(A)ga) .
0

Hence, by the von Neumann ergodic theorem,
ot

1
ve+(A) = lim — [ vp(ry(A4)) ds = (Pker Ly BB ¢, 1 (A)p),
0

t—o0 t

wherePx., 1., is the projection ofKer Ly . Sincey is cyclic for 7, (O)’, for every
n € N we can find aB,, such thafjw — v, || < 1/n. The sequenceg, is Cauchy
in norm and for allvy € X' (w, 7v),

lw+ = vB,+l| < [w—vg,[ <1/n.
This implies that the norm limit of’5,, is the unique NESS it (w, 7). Since
vp,+ € N, andAN, is a norm closed subset 6F, this NESS isvo-normal. O
9.2 The Hilbert-Schmidt condition

Proof of Theorem 8

We will prove thatT}/* — T'/2 is Hilbert-Schmidt. The proof thatl — T, )!/2 —
(I — T)'/? is also Hilbert-Schmidt is identical. For an elementaryddtction to
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Hilbert-Schmidt operators (which suffices for the proofdvé) the reader may con-
sult Section V1.6 in [RS].

By our general assumptions, the functiofis) and F'(r)~! are bounded and
continuous. By the assumption of Theorem 8, all the deissitiér) are the same
and equal te(r). Hence,

Tr = @Pj(?‘) = p(hr).

Let pr be the orthogonal projection on the reservoir Hilbert sggeeSinceT!/2 —
T713/2 = Té/Q, T}F/Q(prn), (prR)T}r/Q are obviously Hilbert-Schmidt, it suffices
to show tha’goRT}rppR — T;/Q is a Hilbert-Schmidt operator on the Hilbert space
hr. Since

prT*pr — TR = —prW* [W_pr, T %],

it suffices to show thak’ = [W_pxr, Tép] is a Hilbert-Schmidt operator dy; . By
Theorem 6, fol € b,

r et v 1/2 _ r 1/2
(Kg)(?") — )\22( ) / p( ) P( ) f(T/) ~g(7’/) dT/.

(r) r—r+io
Let K;; be an operator on?((e_, e ), dr) defined by

) [ A
_)\F(T)/e " —7r+io F(r)n(r") dr.

(Kijh)(r)

To prove thatK is Hilbert-Schmidt o, it suffices to show thai(;; is Hilbert-
Schmidt onL?((e_, e ), dr) for all i, 5.
Lethy, he € L%((e—, ey ),dr) be bounded continuous functions. Then

[ }_l :
(o Kgha) = 2 [ 2020 g, (69
where " "
1 o p(T’) — p(T) oot / ’
gg(?‘)—lellﬁol 5 E— (Y ha(r") dr'.
Using the identity
1 r—r ie

r—rdie (r—r)2+e2 (1 —71)2 42

and the fact that, for € (e_, e;), one has

e+ o(r V2 _ p(r)1/2 7
/ p(<73 = r>2p+( 6)2 Fi(r)ha (") dr’ = m(p(r)/2 = p(r)/2) f(r)ha ()

:07

lim
el0
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(see the Lecture [Ja]), we obtain

et (¢ _p P2 () 1/2)
0 =) = pr1 )

go(r) =lim | 7 — P2+ e

Sincef; andh, are bounded ang(r)'/? is 1-Holder continuous, we have

er (1 NV 1/2y
wp [T DA
e>0,re(e_,eq)|Je_ (T - ’I") +e
ey £l /
<C sup Fir)ha(r) dr’ < 0.

ré(e—,eq4)Je_ |T/ - ’I"|1/2

Moreover, sinceh, (r)F(r)~' f;(r) € L'((e—,e),dr), we can invoke the domi-
nated convergence theorem to rewrite Equ. (68) as

(h1, Kijhs) = 13g(h1, Kijchs) (69)

whereKj; . is the integral operator oh?((e_, e ), dr) with kernel

o2 i) () (=) ()2 = p(r)?)
ke(r,r) = X F(r) (r' —r)2 + €2 '

We denote byl - || us the Hilbert-Schmidt norm. Then

([ KCij e

%{S:/|k€(r,r')|2drdr’.

Sincep(r)!/? is a-Holder continuous forr > 1/2 and F(r)~! is bounded there
exists a constar@® such that, for, ' € (e_, e4) ande > 0, one has the estimate

()21 2

I — /20=a)

|ke(r,r)? < C
Therefore, sinc&(1 — «) < 1, we conclude that
sup || Kij. s = sup/ |ke(r,r")|? drdr’ < oo.
e>0 >0

The Hilbert-Schmidt class of operators 8A((e_, e ),dr) is a Hilbert space with
the inner productX,Y) = Tr(X*Y). Since{K;;}.>0 IS @ bounded set in this
Hilbert space, there is a sequenrge— 0 and a Hilbert-Schmidt operat(ifij such
that for any Hilbert-Schmidt operatof on L2((e_, ey ),dr),

lim Tr(X*Kjj.,) = Tr(X*K;).
Taking X = (h1,-)he, whereh; € L*((e_,e4),dr) are bounded and continuous,
we derive from (69) thathi, K;jha) = (h1, K;jh2). Since the set of such's is
dense inL?((e_, e, ),dr), K;; = K;; and soK;; is Hilbert-Schmidt. O
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