Quantum Koopmanism

Vojkan Jakšić¹, Claude-Alain Pillet²

¹ Department of Mathematics and Statistics	² CPT-CNRS, UMR 6207
McGill University	Université du Sud Toulon-Var
805 Sherbrooke Street West	B.P. 20132
Montreal, QC, H3A 2K6, Canada	83957 La Garde Cedex, France
jaksic@math.mcgill.ca	pillet@univ-tln.fr

The Koopman-von Neumann spectral approach to ergodic theory is a powerful tool in the study of statistical properties of dynamical systems (see [Ergodic theory. Mixing], [Spectrum of dynamical system]). Its extension to quantum dynamical systems – the spectral theory of Liouvilleans – is at the center of many recent results in quantum statistical mechanics (see [Quantum nonequilibrium statistical mechanics], [Return to equilibrium], [NESS in quantum statistical mechanics] as well as [BFS], [DJ], [FM], [JP]).

Let (\mathcal{O}, τ) be a <u>C*-</u> or <u>W*-dynamical system</u> equipped with a τ -invariant state ω , assumed to be normal in the W*-case. The <u>GNS-representation</u> $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$ maps the triple $(\mathcal{O}, \tau, \omega)$ into $(\mathcal{O}_{\omega}, \tilde{\tau}, \tilde{\omega})$, a W*-dynamical system on the <u>enveloping von Neumann algebra</u> $\mathcal{O}_{\omega} = \pi_{\omega}(\mathcal{O})''$ with a normal invariant state $\tilde{\omega}(A) = (\Omega_{\omega} | A\Omega_{\omega})$. The W*-dynamics $\tilde{\tau}$ is given by

$$\tilde{\tau}^t(A) = \mathrm{e}^{\mathrm{i}tL_\omega} A \mathrm{e}^{-\mathrm{i}tL_\omega}$$

where L_{ω} is the ω -Liouvillean (see Section 3 in [Quantum dynamical systems]). We shall say that $(\pi_{\omega}, \mathcal{O}_{\omega}, \mathcal{H}_{\omega}, L_{\omega}, \Omega_{\omega})$ is the normal form of $(\mathcal{O}, \tau, \omega)$.

1 Ergodic properties of quantum dynamical systems

Let \mathfrak{M} be a <u>von Neumann algebra</u> acting on the Hilbert space \mathcal{H} . The support s_{ω} of a <u>normal state</u> ω on \mathfrak{M} is the smallest orthogonal projection $P \in \mathfrak{M}$ such that $\omega(P) = 1$. A normal state ω is faithful if and only if $s_{\omega} = I$. The support of the state $\omega(A) = (\Omega | A\Omega)$ is the orthogonal projection on the closure of the subspace $\mathfrak{M}'\Omega$.

Notation. We write $\nu \ll \omega$ whenever ν is a $\underline{\omega}$ -normal state such that $s_{\nu} \leq s_{\omega}$.

Remark. If \mathfrak{M} is Abelian any ω -normal state ν satisfies $\nu \ll \omega$. This explains why the support condition is absent in classical ergodic theory (the reader may consult [P] for a detailed discussion of this point). In most applications to statistical mechanics ω is faithful and any ω -normal state ν satisfies $\nu \ll \omega$.

Definition 1 Let (\mathfrak{M}, τ) be a W^* -dynamical system and ω a normal τ -invariant state.

1. $(\mathfrak{M}, \tau, \omega)$ is ergodic if

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \omega(As_\omega \tau^t(B)) \, \mathrm{d}t = \omega(A)\omega(B),$$

holds for any $A, B \in \mathcal{O}$.

2. $(\mathfrak{M}, \tau, \omega)$ is weakly mixing if

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \left| \omega(As_\omega \tau^t(B)) - \omega(A)\omega(B) \right| \, \mathrm{d}t = 0,$$

holds for all $A, B \in \mathcal{O}$.

3. $(\mathfrak{M}, \tau, \omega)$ is mixing or returns to equilibrium if

$$\lim_{t \to \infty} \omega(As_{\omega}\tau^t(B)) = \omega(A)\omega(B),$$

for any $A, B \in \mathcal{O}$

If ω is an invariant state of the C*-dynamical system (O, τ) we say that (O, τ, ω) is ergodic (resp. mixing, weakly mixing) if (O_ω, τ̃, ω̃) is ergodic (resp. mixing, weakly mixing).

Remark. Ergodicity 1 is equivalent to

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \nu(\tau^t(A)) \, \mathrm{d}t = \omega(A).$$

for all $A \in \mathfrak{M}$ and all states $\nu \ll \omega$. The mixing property 3 is equivalent to

$$\lim_{t \to \infty} \nu(\tau^t(A)) = \omega(A),$$

for all $A \in \mathfrak{M}$ and all states $\nu \ll \omega$ (see [R], [JP]).

2 Spectral characterization of ergodic properties

We refer to [P] for proofs of the results in this section.

The following theorem is the quantum version of the well known Koopman-von Neumann spectral characterizations ([AA], [K], [N]).

Theorem 2 Let (\mathcal{O}, τ) be a C^* - or W^* -dynamical system equipped with a τ -invariant state ω , assumed to be normal in the W^* -case. Denote by $(\pi_{\omega}, \mathcal{O}_{\omega}, \mathcal{H}_{\omega}, L_{\omega}, \Omega_{\omega})$ its normal form and by \mathcal{K}_{ω} the closure of $\pi_{\omega}(\mathcal{O})'\Omega_{\omega}$.

- 1. The subspace \mathcal{K}_{ω} reduces the operator L_{ω} . Denote by \mathfrak{L}_{ω} the restriction $L_{\omega}|_{\mathcal{K}}$.
- 2. $(\mathcal{O}, \tau, \omega)$ is ergodic if and only if $\operatorname{Ker}(\mathfrak{L}_{\omega})$ is one dimensional.
- 3. $(\mathcal{O}, \tau, \omega)$ is weakly mixing if and only if 0 is the only eigenvalue of \mathfrak{L}_{ω} and $\operatorname{Ker}(\mathfrak{L}_{\omega})$ is one dimensional.
- 4. $(\mathcal{O}, \tau, \omega)$ is mixing if and only if

$$\underset{t \to \infty}{\operatorname{v}} - \lim_{t \to \infty} \mathrm{e}^{\mathrm{i} t \mathfrak{L}_{\omega}} = \Omega_{\omega}(\Omega_{\omega} | \cdot).$$

5. If the spectrum of \mathfrak{L}_{ω} on $\{\Omega_{\omega}\}^{\perp}$ is purely absolutely continuous then $(\mathcal{O}, \tau, \omega)$ is mixing.

Note that \mathcal{K}_{ω} is the range of the support of $\tilde{\omega}$. Thus, if $\tilde{\omega}$ is faithful then $\mathfrak{L}_{\omega} = L_{\omega}$.

v

Like the classical Koopman operator, the reduced Liouvillean \mathfrak{L}_{ω} of an ergodic quantum dynamical system has a number of peculiar spectral properties.

Theorem 3 Assume, in addition to the hypotheses of the previous theorem, that $(\mathcal{O}, \tau, \omega)$ is ergodic. Then the following hold:

- 1. The point spectrum of \mathfrak{L}_{ω} is a subgroup Σ of the additive group \mathbb{R} .
- 2. The eigenvalues of \mathfrak{L}_{ω} are simple.
- 3. The spectrum of \mathfrak{L}_{ω} is invariant under translations in Σ , that is, $\operatorname{spec}(\mathfrak{L}_{\omega}) + \Sigma = \operatorname{spec}(\mathfrak{L}_{\omega})$.
- 4. If Ψ is a normalized eigenvector of \mathfrak{L}_{ω} then $(\Psi|\pi_{\omega}(A)\Psi) = \omega(A)$ for all $A \in \mathcal{O}$.
- 5. If $(\mathcal{O}, \tau, \omega)$ is mixing then 0 is the only eigenvalue of \mathfrak{L}_{ω} .
- 6. If ω is a (τ, β) -KMS state then $\Sigma = \{0\}$ and the system is weakly mixing.

References

- [AA] Arnold, V.I., Avez, A.: Ergodic Problems of Classical Mechanics. Benjamin, New York (1968).
- [BFS] Bach, V., Fröhlich, J., Sigal, I.M.: Return to equilibrium. J. Math. Phys. 41, 3985 (2000).
- [DJ] Dereziński, J., Jakšić, V.: Return to equilibrium for Pauli-Fierz systems. Ann. Henri Poincaré 4, 739 (2003).
- [FM] Fröhlich, J., Merkli, M.: Another return of "Return to Equilibrium". Commun. Math. Phys. 251, 235 (2004).
- [JP] Jakšić, V., Pillet, C.-A.: On a model for quantum friction III. Ergodic properties of the spin-boson system. Commun. Math. Phys. **178**, 627 (1996).
- [K] Koopman, B.O.: Hamiltonian systems and transformations in Hilbert spaces. Proc. Nat. Acad. Sci. (U.S.A.) 17, 315 (1931).
- [N] von Neumann, J.: Proof of the quasiergodic hypothesis. Proc. Acad. Sci. (U.S.A.) 17, 70 (1932).
- [P] Pillet, C.-A.: Quantum dynamical systems. In S. Attal, A. Joye, and C.-A. Pillet, editors, Open Quantum Systems I: The Hamiltonian Approach, volume 1880 of Lecture Notes in Mathematics. Springer, New York, (2006).
- [R] Robinson, D.W.: C*-algebras and quantum statistical mechanics. In C*-Algebras and their Applications to Statistical Mechanics and Quantum Field Theory. D. Kastler editor. North-Holland, Amsterdam (1976).