Quantum dynamical systems
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In the most common approach to quantum physics observatdedescribed by all operators on a certain
Hilbert space. This formalism is usually sufficient in theseaf zero temperature. To describe quantum systems
in thermodynamic limit at positive temperatures, or moraggally, at positive densities, it is convenient to use
a more sophisticated formalism where observables areileddny elements of some operator algebra (see [The
C*-algebra approach], [Free Bose and Fermi gases — the algeppoach]). In this algebraic approach, quantum
dynamics in the Heisenberg picture is given by a one-pammngedup of automorphisms of the algebra of observ-
ables. In analogy with the theory of classical dynamicatesys, one says that such a group defines a quantum
dynamical system. There are two versions of the algebragicoagh. They differ in the topological properties of
the algebra and of the dynamical group: tfe- and thelV/*-approach.

1 C*-dynamical systems

Definition 1 A C*-dynamics on aC*-algebra O is a strongly continuous one-parameter group«edutamor-
phisms of0, R > ¢t — 7t. AC*-dynamical system is a pai©), 7) whereQ is aC*-algebra andr a C*-dynamics
onO.

The strong continuity of- means that the map +— 7%(A) is norm-continuous for anyl € O. From the
general theory o$tronglycontinuousgroups on a Banach spaceCa-dynamicsr has a densely defined, closed
infinitesimalgeneratop such that
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for A € Dom . In particular, if O has a unit/ thenI € Domé andé(I) = 0. One easily sees thatis a
x-derivation i.e., that

1. Dom is ax-algebra.
2. 0(AB) = 6(A)B + Aé(B) forall A, B € Dom.
3. 0(A*) = 0(A)* forall A € Domod.

Generators of*-dynamics are characterized by the following simple adaptaf theHille-YosidaTheorem
(see [BR1)).

Theorem 2 LetO be aC*-algebra. A norm densely defined and closed oper&tor O generates &'*-dynamics
if and only if

1. § is ax-derivation.
2. Ran(Id + A\9) = O forall A e R.
3. A+ X5(A4)|| > ||Al forall A € Rand A € Dom 4.



Example 1.Let H be a Hilbert space anf a bounded self-adjoint operator &t Thent!(A) = el*f Ae~iH is
a C*-dynamics on3(H). Its generatot(A) = i[H, A] is bounded. Note that boundednesgbis required for
t — 7t to be strongly continuous in this case.

Example 2.The following is based on the material of Subsection 2.2 ineg[T*-algebra approach]. Lédt be

a Hilbert space and a self-adjoint operator oh. The group ofBogoliubovautomorphisms of th€*-algebra
CAR(h) defined byrt(a(f)) = a(e'" ) is aC*-dynamics. This is a consequence of the strong continuitjef
unitary groupt — e'** and of the norm continuity of the map — a(f) from b to CCR(h). The x-subalgebra
generated bya(f) | f € Domh} is contained in the domain of the generai@f  andd(a(f)) = a(ihf).

2 Wr*-dynamical systems
In some cases (e.g. for systems of bosons)(th@pproach is not adequate and one has to usBtheetting.

Definition 3 Let9t be avonNeumanrelgebra or al¥/*-algebra. AW *-dynamics ot is ano-weakly contin-
uous groupR > ¢ — 7t of x-automorphisms dit. A W*-dynamical system is a paifJt, 7) where9t is a von
Neumann algebra and a W*-dynamics of.

The continuity condition on the groupmeans that, for anyl € 901, the mapt — 7t(A) is continuous in the
og-weaktopology oft. The generatad of aW*-dynamicsr on a von Neumann algeb?# is defined by Equ. (1),
as in theC*-case, except that the limit is now understood indhe@eak topology. It is a-weakly densely defined
and closed-derivation ord)t such that/ € Dom d andd(I) = 0. Generators ofV *-dynamics are characterized
by the following analog of Theorem 2 (see [BR1]).

Theorem 4 Let9t be a von Neumann algebra.cAweakly densely defined and closed operaton 9t generates
a W*-dynamics if and only if

1. J is a*-derivation andl € Dom 6.
2. Ran(Id + X\6) = O forall A € R.
3. J[A+X5(A)] > ||Al| forall x € Rand A € Dom 6.

Example 3. Let H be a Hilbert space andl a self-adjoint operator off{. Then7!(A) = eitf Ae~itH is a
W*-dynamics on3(H).

Example 4.The following is based on the material of Subsection 2.3 ine[C*-algebra approach]. Lg be a
Hilbert space and a self-adjoint operator of. Denote byh, a subspace df invariant under the unitary group
e'’h. Except in trivial cases the group of Bogoliubov automospts of theC*-algebraCCR(h) defined by

TH(W(f)) = W ("™ f),

does not define &*-dynamics becauser! (W (f)) — W(f)|| = 2forallt € Randf € b, such that" f + f.
Denote byMt the von Neumann algebra acting on the bosonic Fock spgdg and generated by thé/eyl
operator§ W (f) | f € bo}. Thent has an extension 1 given by

Tt(A) _ eitdF(h)AefitdF(h)'
It defines aV *-dynamics orit.

Example 3See [Free Bose and Fermi gases — the algebraic approach].



3 Invariant states and Liouvilleans

In this and the following section we use freely the notatiohSection 3 in [The*-algebra approach]. We shall
say that(O, 7) is a quantum dynamical system if it is eithe€a- or aWW*-dynamical system.

Definition 5 Let (O, ) be a quantum dynamical systemstatew on O is r-invariant if w o 7¢ = w holds for all
teR.

As in the theory of classical dynamical systems, invarigates (and more specifically normal invariant states
in the W*-case) play an important role in the analysis of quantum dyocal systems. As an illustration let us
explore theGNSrepresentation induced by an invariant state.

Let w be an invariant state of the quantum dynamical systénr) and denote byH,,, 7, 2. ) the GNS
representation of induced byw. The unicity of the GNS representation implies that thelistexa unique one-
parameter group— U, (t) of unitary operators oft,, such that

7w (T (A)) = Uu ()10 (A) UL (t)*,  Uu(t)Qu = Qu,

foranyt € RandA € O. Assumingw to be normal in thé¥V *-case, it is easy to show that the grolip is
strongly continuous. Hence, by Stone’s theorem, therdseaignique self-adjoint operatér, such that

eitL‘”ﬂ'w(A)efitL“ = T, (1'(A)), L, =0.

The operatorL,, is sometimes called-Liouvillean of (O, 7). Important information on the dynamics of the
system can be deduced from its spectral properties, seeitpFdakesaki theory], [Spectral analysis of small
guantum systems interacting with a reservoir], [Quanturopfoanism] and [Return to equilibrium].
Next we note that
D(A) = (Qu]A),

defines a normal extension of the staté theenvelopingvon Neumanralgebra®,,,: w = & o . Similarly,

7~_t(A) _ eitL“’Ae_itL“’,

defines al¥’*-dynamics on®,, such thatr! o 7, = m, o 7t. We conclude that the GNS construction maps a
C*-dynamical systenfO, 7) with invariant statev into a W *-dynamical system{O,,, 7) with normal invariant
statew.

The above construction can be performed under weaker catytzonditions that the strongfweak continuity
used here, see [P] for a more general definition of quanturamyjcal systems.

4 Perturbation theory
Let (O, T) be aC*-dynamical system and € O a self-adjoint element. f denotes the generator ofthen
Sy =06 +i[V, -],
is well defined onDom ¢ and generates a perturbed dynami¢s = e’®v on 0. One says thaty is a local

perturbation ofr. Such local perturbations play an important role in the thed C*-dynamical systems.
Iterating the integral equation (Duhamel formula)

(A) = 74(A4) + / PGV r (A)]) ds,



leads to the Araki-Dyson expansion

tn—1
0

TW‘)=Tt<A>+Z/Odt1/01dtz~--/ dtp it (V),i[--- il (V), 7(A)] -],

which is norm convergent for any € R and A € O. Another useful representation of the locally perturbed
dynamics is the interaction picturg, (4) = T'{,7/(A)I'*. The operatol}, is the solution of the differential
equation

o, =it rH(V),

with the initial conditionl'9, = I. It follows thatI™, € O is unitary and has the norm convergent Dyson expansion

tn—
0

oo t t1 1
F€/21+Zln/dt1/ dtz/ dtnTtn(V)Ttl(V)
n—1 0 0

Moreover it satisfies the cocycle relation
Iy =Ty 7' (0y) = 7 ()T

Local perturbations ofV*-dynamical systems can be handled in a similar way, repigitia norm topology with
theo-weak topology and interpreting all integrals in the weadense.

If w is an invariant state for the unperturbed dynamical sy$@ir) (supposed to be normal in th&*-case)
then, in the induced GNS representation and with the notatioshe previous subsection, the perturbed dynamics
is implemented by the unitary group generatedhy+ @ where@ = 7, (V),

(T (A)) = e Eet@p, (A)eHTetQ),
Note that the perturbed unitary group is related to the dedyg through the interaction picture formula

tn—
0

. ~ . ~ > t t1 1
MLt ZF githe T p (M) =143 1 / at, / dty - / dt, 77(Q) - 71(Q).
n=1 0 0

Consequently, the perturbed dynamics extendsii6*adynamics
7 (A) = eltlet@ ge7itLut@ — T4 F(A)TY,

on the enveloping von Neumann algeldg. In theWW*-case this formula is the starting point for an extension of
perturbation theory to unbounded perturbationsQ lis a selfadjoint operator ok, affiliated toO,, = 7, (O)
and such thaL,, + Q is essentially self-adjoint oPom(L,,) N Dom(Q) then the unitary group(“«+®) defines
aW*-dynamics orQ,,. This extension of perturbation theory has been develap@dJdP].

Except for its important role in Araki’s perturbation thgaf KMS-states (see Section 3 in [KMS states] and
[BR2]), the operatol.,, + Q is of little value in the study of dynamical propertiesrf. This is due to the fact that
it is not adapted to the structure of the enveloping von Newmadgebra?,,. The standard Liouvillean, introduced
in [Tomita-Takesaki theory], corrects this problem.

If t — V(t) = V(t)* € Ois continuous then equatiah 7" (A) = 737 (dy (1) (A)) together with the
conditionr{* = Id defines a two parameter family efautomorphisms of) such that§ " o 7{;7" = 757"
Perturbation theory can be developed as in the time indepemase starting from the integral equation

N A) = 1175(A) —l—/ o (i[V(u),Tt_“(A)]) du.
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