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In the most common approach to quantum physics observables are described by all operators on a certain
Hilbert space. This formalism is usually sufficient in the case of zero temperature. To describe quantum systems
in thermodynamic limit at positive temperatures, or more generally, at positive densities, it is convenient to use
a more sophisticated formalism where observables are described by elements of some operator algebra (see [The
C∗-algebra approach], [Free Bose and Fermi gases – the algebraic approach]). In this algebraic approach, quantum
dynamics in the Heisenberg picture is given by a one-parameter group of automorphisms of the algebra of observ-
ables. In analogy with the theory of classical dynamical systems, one says that such a group defines a quantum
dynamical system. There are two versions of the algebraic approach. They differ in the topological properties of
the algebra and of the dynamical group: theC∗- and theW ∗-approach.

1 C
∗-dynamical systems

Definition 1 A C∗-dynamics on aC∗-algebraO is a strongly continuous one-parameter group of∗-automor-
phisms ofO, R ∋ t → τ t. AC∗-dynamical system is a pair(O, τ) whereO is aC∗-algebra andτ a C∗-dynamics
onO.

The strong continuity ofτ means that the mapt 7→ τ t(A) is norm-continuous for anyA ∈ O. From the
general theory ofstronglycontinuousgroups on a Banach space, aC∗-dynamicsτ has a densely defined, closed
infinitesimalgeneratorδ such that

δ(A) = lim
t→0

τ t(A) − A

t
, (1)

for A ∈ Dom δ. In particular, ifO has a unitI then I ∈ Dom δ and δ(I) = 0. One easily sees thatδ is a
∗-derivation i.e., that

1. Dom δ is a∗-algebra.

2. δ(AB) = δ(A)B + Aδ(B) for all A,B ∈ Dom δ.

3. δ(A∗) = δ(A)∗ for all A ∈ Dom δ.

Generators ofC∗-dynamics are characterized by the following simple adaptation of theHille-YosidaTheorem
(see [BR1]).

Theorem 2 LetO be aC∗-algebra. A norm densely defined and closed operatorδ onO generates aC∗-dynamics
if and only if

1. δ is a∗-derivation.

2. Ran(Id + λδ) = O for all λ ∈ R.

3. ‖A + λδ(A)‖ ≥ ‖A‖ for all λ ∈ R andA ∈ Dom δ.
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Example 1.Let H be a Hilbert space andH a bounded self-adjoint operator onH. Thenτ t(A) = eitHAe−itH is
a C∗-dynamics onB(H). Its generatorδ(A) = i[H,A] is bounded. Note that boundedness ofH is required for
t → τ t to be strongly continuous in this case.

Example 2.The following is based on the material of Subsection 2.2 in [The C∗-algebra approach]. Leth be
a Hilbert space andh a self-adjoint operator onh. The group ofBogoliubovautomorphisms of theC∗-algebra
CAR(h) defined byτ t(a(f)) = a(eithf) is aC∗-dynamics. This is a consequence of the strong continuity ofthe
unitary groupt 7→ eith and of the norm continuity of the mapf 7→ a(f) from h to CCR(h). The∗-subalgebra
generated by{a(f) | f ∈ Dom h} is contained in the domain of the generatorδ of τ andδ(a(f)) = a(ihf).

2 W
∗-dynamical systems

In some cases (e.g. for systems of bosons), theC∗-approach is not adequate and one has to use theW ∗ setting.

Definition 3 Let M be avonNeumannalgebra or aW ∗-algebra. AW ∗-dynamics onM is anσ-weakly contin-
uous groupR ∋ t 7→ τ t of ∗-automorphisms ofM. A W ∗-dynamical system is a pair(M, τ) whereM is a von
Neumann algebra andτ a W ∗-dynamics onM.

The continuity condition on the groupτ means that, for anyA ∈ M, the mapt 7→ τ t(A) is continuous in the
σ-weaktopology ofM. The generatorδ of aW ∗-dynamicsτ on a von Neumann algebraM is defined by Equ. (1),
as in theC∗-case, except that the limit is now understood in theσ-weak topology. It is aσ-weakly densely defined
and closed∗-derivation onM such thatI ∈ Dom δ andδ(I) = 0. Generators ofW ∗-dynamics are characterized
by the following analog of Theorem 2 (see [BR1]).

Theorem 4 LetM be a von Neumann algebra. Aσ-weakly densely defined and closed operatorδ onM generates
a W ∗-dynamics if and only if

1. δ is a∗-derivation andI ∈ Dom δ.

2. Ran(Id + λδ) = O for all λ ∈ R.

3. ‖A + λδ(A)‖ ≥ ‖A‖ for all λ ∈ R andA ∈ Dom δ.

Example 3. Let H be a Hilbert space andH a self-adjoint operator onH. Then τ t(A) = eitHAe−itH is a
W ∗-dynamics onB(H).

Example 4.The following is based on the material of Subsection 2.3 in [The C∗-algebra approach]. Leh be a
Hilbert space andh a self-adjoint operator onh. Denote byh0 a subspace ofh invariant under the unitary group
eith. Except in trivial cases the group of Bogoliubov automorphisms of theC∗-algebraCCR(h0) defined by

τ t(W (f)) = W (eithf),

does not define aC∗-dynamics because‖τ t(W (f)) − W (f)‖ = 2 for all t ∈ R andf ∈ h0 such thateithf 6= f .
Denote byM the von Neumann algebra acting on the bosonic Fock spaceΓs(h) and generated by theWeyl

operators{W (f) | f ∈ h0}. Thenτ has an extension toM given by

τ t(A) = eitdΓ(h)Ae−itdΓ(h).

It defines aW ∗-dynamics onM.

Example 3.See [Free Bose and Fermi gases – the algebraic approach].
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3 Invariant states and Liouvilleans

In this and the following section we use freely the notationsof Section 3 in [TheC∗-algebra approach]. We shall
say that(O, τ) is a quantum dynamical system if it is either aC∗- or aW ∗-dynamical system.

Definition 5 Let (O, τ) be a quantum dynamical system. Astateω onO is τ -invariant if ω ◦ τ t = ω holds for all
t ∈ R.

As in the theory of classical dynamical systems, invariant states (and more specifically normal invariant states
in the W ∗-case) play an important role in the analysis of quantum dynamical systems. As an illustration let us
explore theGNSrepresentation induced by an invariant state.

Let ω be an invariant state of the quantum dynamical system(O, τ) and denote by(Hω, πω,Ωω) the GNS
representation ofO induced byω. The unicity of the GNS representation implies that there exists a unique one-
parameter groupt 7→ Uω(t) of unitary operators onHω such that

πω(τ t(A)) = Uω(t)πω(A)Uω(t)∗, Uω(t)Ωω = Ωω,

for any t ∈ R andA ∈ O. Assumingω to be normal in theW ∗-case, it is easy to show that the groupUω is
strongly continuous. Hence, by Stone’s theorem, there exists a unique self-adjoint operatorLω such that

eitLωπω(A)e−itLω = πω(τ t(A)), LωΩω = 0.

The operatorLω is sometimes calledω-Liouvillean of (O, τ). Important information on the dynamics of the
system can be deduced from its spectral properties, see [Tomita-Takesaki theory], [Spectral analysis of small
quantum systems interacting with a reservoir], [Quantum Koopmanism] and [Return to equilibrium].

Next we note that
ω̃(A) = (Ωω|AΩω),

defines a normal extension of the stateω to theenvelopingvonNeumannalgebraOω: ω = ω̃ ◦ πω. Similarly,

τ̃ t(A) = eitLωAe−itLω ,

defines aW ∗-dynamics onOω such that̃τ t ◦ πω = πω ◦ τ t. We conclude that the GNS construction maps a
C∗-dynamical system(O, τ) with invariant stateω into a W ∗-dynamical system(Oω, τ̃) with normal invariant
stateω̃.

The above construction can be performed under weaker continuity conditions that the strong/σ-weak continuity
used here, see [P] for a more general definition of quantum dynamical systems.

4 Perturbation theory

Let (O, τ) be aC∗-dynamical system andV ∈ O a self-adjoint element. Ifδ denotes the generator ofτ then

δV = δ + i[V, · ],

is well defined onDom δ and generates a perturbed dynamicsτ t
V = etδV on O. One says thatτV is a local

perturbation ofτ . Such local perturbations play an important role in the theory of C∗-dynamical systems.
Iterating the integral equation (Duhamel formula)

τ t
V (A) = τ t(A) +

∫ t

0

τ t−s(i[V, τ s
V (A)]) ds,
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leads to the Araki-Dyson expansion

τ t
V (A) = τ t(A) +

∞∑

n=1

∫ t

0

dt1

∫ t1

0

dt2 · · ·

∫ tn−1

0

dtn i[τ tn(V ), i[· · · , i[τ t1(V ), τ t(A)] · · · ]],

which is norm convergent for anyt ∈ R andA ∈ O. Another useful representation of the locally perturbed
dynamics is the interaction pictureτ t

V (A) = Γt
V τ t(A)Γt∗

V . The operatorΓt
V is the solution of the differential

equation
∂tΓ

t
V = iΓt

V τ t(V ),

with the initial conditionΓ0
V = I. It follows thatΓt

V ∈ O is unitary and has the norm convergent Dyson expansion

Γt
V = I +

∞∑

n=1

in
∫ t

0

dt1

∫ t1

0

dt2 · · ·

∫ tn−1

0

dtn τ tn(V ) · · · τ t1(V ).

Moreover it satisfies the cocycle relation

Γt+s
V = Γt

V τ t(Γs
V ) = τ t

V (Γs
V )Γt

V .

Local perturbations ofW ∗-dynamical systems can be handled in a similar way, replacing the norm topology with
theσ-weak topology and interpreting all integrals in the weak-∗ sense.

If ω is an invariant state for the unperturbed dynamical system(O, τ) (supposed to be normal in theW ∗-case)
then, in the induced GNS representation and with the notation of the previous subsection, the perturbed dynamics
is implemented by the unitary group generated byLω + Q whereQ = πω(V ),

πω(τ t
V (A)) = eit(Lω+Q)πω(A)e−it(Lω+Q).

Note that the perturbed unitary group is related to the cocycle ΓV through the interaction picture formula

eit(Lω+Q) = Γ̃t
V eitLω , Γ̃t

V = πω(Γt
V ) = I +

∞∑

n=1

in
∫ t

0

dt1

∫ t1

0

dt2 · · ·

∫ tn−1

0

dtn τ̃ tn(Q) · · · τ̃ t1(Q).

Consequently, the perturbed dynamics extends to aW ∗-dynamics

τ̃ t
V (A) = eit(Lω+Q)Ae−it(Lω+Q) = Γ̃t

V τ̃ t(A)Γ̃t∗
V ,

on the enveloping von Neumann algebraOω. In theW ∗-case this formula is the starting point for an extension of
perturbation theory to unbounded perturbations. IfQ is a selfadjoint operator onHω affiliated toOω = πω(O)
and such thatLω + Q is essentially self-adjoint onDom(Lω)∩Dom(Q) then the unitary groupeit(Lω+Q) defines
aW ∗-dynamics onOω. This extension of perturbation theory has been developed in [DJP].

Except for its important role in Araki’s perturbation theory of KMS-states (see Section 3 in [KMS states] and
[BR2]), the operatorLω +Q is of little value in the study of dynamical properties ofτV . This is due to the fact that
it is not adapted to the structure of the enveloping von Neumann algebraOω. The standard Liouvillean, introduced
in [Tomita-Takesaki theory], corrects this problem.

If t 7→ V (t) = V (t)∗ ∈ O is continuous then equation∂tτ
s→t
V (A) = τ s→t

V (δV (t)(A)) together with the
conditionτs→s

V = Id defines a two parameter family of∗-automorphisms ofO such thatτ s→t
V ◦ τ t→r

V = τs→r
V .

Perturbation theory can be developed as in the time independent case starting from the integral equation

τs→t
V (A) = τ t−s(A) +

∫ t

s

τs→u
V

(
i[V (u), τ t−u(A)]

)
du.
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