The C*-algebra approach
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1 Why operator algebras?

The quantum mechanical description of a system involvirlg affinite number of particles or degrees of freedom
(a finite system) is given by a Hilbert spageand a Hamiltoniart, a self-adjoint operator ok. States of the
system are described by unit vectgrs H or more generally statistical mixtures, i.dgnsitymatrices. Physical
guantities, or observables, are self-adjoint operatorg{orThe time evolution of the system is governed by its
Hamiltonian. In the Schrodinger picture the state evolva@ording to the Schrédinger equatiahy; = Hy,
while observables are time-independent. In the equivdl@idenberg picture the state is time-independent and
observables evolve according to the Heisenberg equéfidpn= i[H, A;]. As a consequence of the tight relation
between Hamiltonian and dynamics, the spectspiifi) of H contains a lot of information about the physics of
the system.

From a mathematical perspective the constructiof{cdnd H for a given physical system is a problem of
representation theory. In the case of a non-relativistitesy of N pointlike particles in Euclidean spaf, the
correspondence between the classical Hamiltonian déiseriand the quantum description is givendanonical

guantization. This procedure provides a representatiohefpositions?, ..., Qsx and conjugate canonical
momentaPy, . .., P3n by self-adjoint operators satisfying thanonicacommutatiorrelations (CCR)

i[P;, Qj] = 045, i[P;, P;] =0, i[Q;, Q4] =0.

Physics imposes other constraints. If the particles havetlsen?{ has to carryV representations of the Lie algebra
of SU(2), the quantum mechanical rotation group. If the particlesiadistinguishable then Pauli’s principle
imposes a definite covariance (as prescribed by the spistgtdheorem) with respect to the natural action of the
symmetric groupby on'H.

The deep fact about finite systems is that the resulting goadescription is unique, up to unitary transfor-
mations and mostly irrelevant multiplicity. This is the ¢ent of the celebrate8tone-vorNeumann theorem (see
[Ro] for a review). In particular the spectrum of the Hamiltan of the system is uniquely determined (again up
to some global multiplicity which can usually be reduced bges-selection rules).

When dealing with systems with an infinite number of partidesiegrees of freedom — quantum fields or
guantum statistical mechanics in the thermodynamic limive-are faced with a radically different situation.
The breakdown of Stone-von Neumann theorem implies theéegxie of a large number of unitary inequivalent
irreducible representations of the CCR. This phenomenantia special feature of CCR. The following example
shows that it occurs also for representations of the gi¥ilif2) (see also [Th]).

Consider an infinite chain of quantum spins= 1/2. To each site: € Z we associate observable§’, 4%
ands'® which satisfy theSU (2) commutation relations

[Ug(gj)7 O‘Z(/k)] = 216my6jklag). 1)



The Hamiltonian is formally given byl = J %, ot¥) so that
i[H,00)] = —2Jezjp0 ). (2)

Seth, = C2 for anyz € Z. The naive candidate for the Hilbert space of the systemdstaximal tensor
product of all the spacdsg,, which we will denoter.czh... It is defined as the completion of the pre-Hilbert space
spanned by vectors of the form,czp., where eachp, is a unit vector inj,.. The inner product between two
such vectors is defined by

(®welww | ®x€Z 9091) = H(lﬁg@ | 90:70)7 (3)
T€Z
whenever the infinite product on the left of (3) is absoluynvergent. Otherwise, the inner product on the right
of (3) is set to be zero. The spaggczh, was first considered by von Neumann in [VN] (he called it theaptete
direct product of the familyh,).cz). This space is much too big for most applications. In palg it is not
separable, i.e., it does not have a countable orthonornséad-ba

Let us describe another candidate for the notion of the tefiensor product, which is more useful in quantum

physics. For all: € Z fix an orthonormal basi§x , x;} of h,.. To each finite subset C Z associate the vector

ex_<®xg)® ®

zeX z€Z\X

According to (3) one ha&xley) = dxy. Thus, finite linear combinations of the vecters form a pre-Hilbert
space. The Hilbert spade obtained by completion is separable sides | X C Z,|X| < oo} is a countable
orthonormal basis.

We note that a paith, x), wheref is a Hilbert space ang € b a unit vector, is called a grounded Hilbert
space. The above construction is a special case of the tprsahuct of grounded Hilbert spaces, hamély=
®zez(bz, X5 ). The interested reader should consult [BSZ] for the germmadtruction.

Remark that the maximal tensor productczbh, naturally splits into the direct sum of sectors, where each
sector has the formv..cz(h., x, ) for a certain sequence of unit vectoys € b,.

If J > 0 then the ground state of the chain has all spins pointing davdirection3. If we interprety: as
the eigenstate of the spinain direction3 with eigenvaluet1/2 then the vectoey clearly describes this ground
state. Then the vectery describes a local excitation of the chain, the spins at X pointing up in directior8.
This immediately leads to the following representationhaf tommutation relations (1) dtd

crg(clHeX =exor, af”ex =isx(®)exour, af’”ex = sx(x)ex,
where ) it .
| X\ {2} ifzreX, ] +1 ifzeX,
XQx_{XU{x} it 2 ¢ X, SX($>—{1 it o ¢ X.

We get a different representation of the commutation retati1) if we think ofy; as the eigenstate of the spin in
direction3 with eigenvaluer1/2, namely

o= — g+ @ — @ B~ _ 3+

’ x

By constructiomf’He@ = —eg for all z € Z but one easily checks that there is no unit vedtos H such that

ag(f)’\ll = —WUforall z € Z. Thus, in the second representation of the system the gretatetioes not belong to

‘H. In particular, there is no unitary operaidron H such tha/o{Y~U* = o{¥*: The two representations are
inequivalent. From the fact that
ey = H O'g(El)iex,

rzeXAY

1Except for recent developments in quantum gravity most Hilsgaces of quantum physics are separable.



it follows that the two representations are also irredwcibl
Expressing the formal HamiltoniaH in the two representations leads to

Hex =J ) +ex+J Y Fex = <i2J|X| TIY 1) ex.

rzeX zZX TEZ
Discarding a constant — the infinite energy of the stgte we may thus set
Hiex == :EZJ‘X‘G)(,

which defines two self-adjoint operators B The physical meaning dff.. is quite clear: It gives the energy of
the system relative to the infinite energy of the stgteOne easily verifies that

i[Hy, oD%] = —2Jesp0 0%,

i.e., that the commutation relations (2) are satisfied. Naiever that the spectra of the two Hamiltonians are
quite different
sp(Hy) = +2JN.

Of course this does not come as a surprise shigameasures the energy relative to two distinct referencestat
One of them has all spins up while the other has all spins down.

In conclusion, there is no natural way to represent the adgelstructure induced by commutation relations
(1), (2) in a Hilbert space. To select such a representatienneeds to specify a reference state. In equilibrium
statistical mechanics this fact does not lead to difficalsace it is always possible to define thermodynamic
guantities (free energy, pressure, ...) as limits of gtiestrelated to finite systems. The situation is different in
non-equilibrium statistical mechanics where dynamicypk much more important role. To give a mathemati-
cally precise sense to non-equilibrium steady states famgke requires the consideration of infinite systems (see
[Nonequilibrium Steady States], [NESS in Quantum StatidtMechanics]).

In the algebraic approach to quantum mechanics the cerijattais the algebraic structure — in the above
example, Relations (1) and (2). Hilbert spaces and Hanidtwnonly appear when this structure gets represented
by linear operators. Such representations are inducecetstaltes of the system, usually via the Gelfand-Naimark-
Segal construction (see Section 3 below). States withrdiftephysical properties (e.qg., different particle or gyer
density) lead to inequivalent representations and hend#fevent spectral properties of the Hamiltonian describ-
ing the dynamics.

The mathematical framework of the algebraic approach totgua mechanics is the theory opeator al-
gebras. C*-algebrasyon Neumannalgebras andV *-algebras are the most commonly used types of operator
algebras in this context. There is a huge literature devioiéide subject. Besides [Operator Algebras], [von Neu-
mann Algebras — General Theory], the reader may consultR1KR, S, SZ, T] for mathematical introductions
and [BR1, BR2, BSZ, H, R, Si, D] for applications to quantunygibs and statistical mechanics.

2 Examplesof C*-algebras

To illustrate the algebraic approach we consider a few sysfer whichC*-algebras provide a natural framework
(see also [Free Bose and Fermi gases — the algebraic app)ro&etshall only be concerned with operator algebras
here. We refer to [Quantum Dynamical Systems] for examplelyiwamics on these algebras.

2.1 Lattice spin systems

To describe ajuantumspin system on the infinite latticE (for examplel’ = Z¢, with d > 1) let b be the finite
dimensional Hilbert space of a single spin and associat@wfcoof h to eache € I'. For finite subsetd C T set
ha = R.enab, and define the local*-algebras

Ar = B(ha).



If A C A’, the natural isometric injectiod — A ® Iy, , allows to identify2(, with a subalgebra dll,. With
this identification it is possible to define

Al = [|Alla, if A€ UAn,

unambiguously for ald € 2, = Uxcr2Aa, the union being over finite subsetslaf This defines &*-norm on
the x-algebra?l,,.. Denote byl = (T, ) the C*-algebra obtained as norm completioraf.. We can identify
each local algebrd, with the corresponding subalgebrafhence

cl
A= (U 91A> : (4)

ACT

where eacl?l, is a full matrix algebraC*-algebras of this type are called uniformly hyperfinite (QlFGlimm-
algebras.

2.2 CAR algebras

Let h be the Hilbert space of a singlermion (typicallyh = L?(R¢) ® C", but other geometries and additional
internal degrees of freedom may lead to different singleigdarHilbert spaces). A system of such fermions is
described by theecondquantization formalism. Denote Hy,(h) the fermionic (or anti-symmetridjock space
overh. The fermioncreation/annihilatioropeators a*(f), a(f) are bounded operators @i (h) satisfying the
Canonical Anti-commutation Relations (CAR)

[a(f),a™(9)]+ = (fl9)L, [a(f),alg)]+ =0, ®)

for all f,g € . A convenient choice of observables is the set of polynarirak, a*, i.e., the set of finite linear
combinations of monomials

a® (1) a*(fn),

where each* stands for eithen or a* and thef; are elements of or more generally of some subspagec b.
This set is clearly a unital-algebra. Its norm closure is@@*-subalgebra oB(T",(h)). It turns out that this algebra
is completely characterized Ity and the CAR (5).

Theorem 2.1 Let by be a pre-Hilbert space. Up te-isomorphisms, there exists a unique unitél-algebra
CAR(ho) with the two following properties:

(i) There exists an anti-linear map: ho — CAR(ho) such that the CAR (5) hold for anfyg € ho.
(i) The setof monomialfa™ (f1)---a*(fn)| fi,---, fa € ho} is total in the algebraCAR(ho).

Remarks. 1. For f # 0, Equ. (5) yields that(f) # 0 and that(a*(f)a(f))? = || f||?a*(f)a(f). Thus

la(HI =171, (6)

holds for anyf € hy. In particular, the map is continuous, extends to the completipiof hy andCAR(h) =
CAR(ho).

2. By condition(ii) the algebraCAR(b) is separable if and only if the Hilbert spafgés.

3. An antilinear mapf — b(f) from b to B(H) satisfying (5) extends to a faithful representatiorCgfR (h) in
the Hilbert spacé.

A direct consequence of this theorem is the following



Corollary 2.2 Let by, ho be two Hilbert spaces. Assume that the bounded linear thaph; — bho and the
bounded anti-linear map : h; — ho satisfy

UU+ V'V = Iy, UU* +VV* =1Iy,,
Uv+vu=0 , Uv*+VvVU* =0.
Then there exists a unigueisomorphismy : CAR(h;) — CAR(h2) such that

V(a(f)) = a(Uf) +a*(Vf).

~v is called the Bogoliubov isomorphism induced by the g&irV). If V' = 0 thenU must be unitary. In this
case we say thatis the Bogoliubov isomorphism (or automorphisnyif = bh5) induced byU'.
When dealing with compound Fermi systems the following taswiften useful.

Theorem 2.3 (Exponential law for fermions) Lethy, ho be two Hilbert spaces. There is a unique unitary oper-
atorU : Ta(h1 @ h2) — Ta(h1) @ Ta(bh2) such that

UQp = Qp @ Qp, Ua(fr © f2)U* = a(fi) @ I+ (1) @ a(f2),
whereQy denotes the Fock vacuum vector aNd= dI'(I) the number operator.

Note thatV € CAR(h,) if and only if b, is finite dimensional. ThusAR(h; @ bh2) is «-isomorphic to the
C*-tensor produc€AR(h;) ® CAR(h2) if and only if at least one of the spage, b, is finite dimensional.

2.3 CCR algebras

Systems obosons are described in an analogous way by creation/#atiohi operators:.*(f) anda(f) on the
bosonic (or symmetric) Fock spate(h). These operators satisfy the Canonical Commutation Rekati

[a(£),a*(9)] = (Flg),  [a(f),alg)] =0, ()

for f,g € h. However, dealing with bosonic systems is more delicateesthe operatora*(f) anda(f) are
unbounded. This follows readily from the algebraic stroetdescribed by the CCR. Indeed, suppose dli#})
is bounded, then sina€ (f)a(f) is positive it follows from the CCR thdta(f)a*(f)|| = lla*(f)a(f)|| + || fII?
which contradicts the fact thdt(f)a*(f)|| = ||la*(f)a(f)|| = [la(f)]|?.

Thus it is not a priori clear how to interpret the CCR withoefterring to some domai® C T's(h) on which
they are supposed to hold. The operator

1 *
E(a (f) +a(f)),

is essentially self-adjoint on the dense subsgacg, (h) of finite particle vectors of's(h). Its selfadjoint clo-
sure is called Segal field operator and denotedbf). Segal field operators satisfy the commutation relations
[0(f), #(g)] = ilm(f|g) which are formally equivalent to (7). The unitary operators

W(f) = e,
are called Weyl operators. They satisfy the Weyl relations
W(f)W (g) = e MID2W(f 4 g). (8)

Finite linear combinations of Weyl operators builéalgebra. Its closure is @*-algebra which is completely
characterized by the Weyl relations (8).

Theorem 2.4 Let by be a pre-Hilbert space. Up te-isomorphisms, there exists a unique unit&l-algebra
CCR(hp) with the following properties:



(i) There is a magf — W(f) from b, to CCR(hp) such that

and the Weyl relations (8) are satisfied for dllg € bg.

(i) Theset{W(f)|f € ho} is total inCCR(ho).

Remarks. 1. It follows from (8) and conditions (i)-(ii) thak’ (0) = I and thatV (f)* = W (f)~!, i.e., thatW (f)

is unitary. Moreover, iff # g then|W (f) — W(g)| = 2.

2. Unlike in the CAR-case, ifjp # h; thenCCR(hy) # CCR(h1). Moreover,CCR(ho) is not separable if
ho # {0}

3. Amap f — Wr(f) from b, to the unitary operators ok satisfying the Weyl relations (8) extends to a
representatioi, =) of CCR(by).

Bogoliubov isomorphisms between CCR algebras are definadiimilar way than in the CAR case.

Corollary 2.5 Lethy, ho be two pre-Hilbert spaces and : h; — b an invertible real-linear map such that
Im(U f|Ug) = Im(f|g). Then there is a unique-isomorphismy : CCR(h;) — CCR(h2) such thaty(W (f)) =
W f).

An exponential law similar to Theorem 2.3 holds for bosons.

Theorem 2.6 (Exponential law for bosons) Lethq, b5 be two Hilbert spaces. There is a unique unitary operator
U :Ts(h1 & bh2) — T's(h1) ® Ts(h2) such that

UQF:QF®QF, UW(fl@fz)U*:W(f1)®I+I®W(f2),

where Qr denotes the Fock vacuum vector. ThU$JR(hH; @ h2) is x-isomorphic to theC*-tensor product
CCR(h1) ® CCR(b2).

In practice theC*-algebraCCR(h() of Theorem 2.4 is not very convenient and one often prefensts with
von Neumann algebras when dealing with bosons (Hetr) be a representation 6fCR(h,). The von Neumann
algebra or{ generated byw(A) | A € CCR(ho)} is given by thebicommutant

M (ho) = m(CCR(ho))".
It is the enveloping von Neumann algebra of the represemtat{see [Free Bose and Fermi gases — the algebraic
approach] for an example).

2.4 Quasi-local structureof 2(I", ) and CAR(h)

As already mentioned, in most physical applications thglsifiermion Hilbert space i§ = L?(RY) ® C" or
some straightforward variant of it. We can assign to eaclnied open subset ¢ R? a local Hilbert space
ha = L?(A) ® C". The canonical isometric injectiorts, — b yield injectionsCAR(h,) — CAR(h) which
allow us to identify the local algebr@AR(h, ) with a C*-subalgebra o€ AR(h). It follows immediately from
remark 1 that

cl
CAR(h) = ( U CAR(hA>> :
ACR4



which should be compared with Equ. (4). Note however thatevhin A’ = () implies 25, 2a/] = {0}, the
CAR algebras of disjoint subsets do not commute. This is ofs® due to the fact that( /) anda(g) rather
anticommute. Lef be thex-automorphism defined ¥(a(f)) = —a(f) and denote by

CAR(h) = {A € CAR(Db) |0(A) = +£A4},

the even and odd parts 6fAR(h) with respect td. Alternatively, these are the closed linear spans of moatsmi
of even and odd degrees in th&. Then one ha§€’AR(hs) = CAR, (ha) ® CAR_(h,) and one easily checks
that

[CAR+ (), CAR£(ba/)] = {0},  [CAR+(ba), CAR%(bar)]+ = {0}.

From a physical point of view observables localized in digjoegions of space should be simultaneously mea-
surable. Hence physical observables of a fermionic systenld be elements of the even subalgeBreR . (h).

In fact, the stronger requirement of gauge-invariancehurteduces the observable algebra to the subalgebra of
CAR, (h) generated by monomials in thé" containing the same number efanda* (see [Araki-Wyss Rep-
resentation] for a discussion of this point). In both the Uhl§ebra2l and the CAR-algebr&AR(h), the local
subalgebras define a so called quasi-local structure. Wet@eSection 2.6 of [BR1] for a general discussion.

3 Statesand the GNS construction

Let O be aC*-algebra. A linear functionap on O is positive if o(A*A) > 0 for all A € O. A positive linear
functional is automatically bounded, i.e., an element efdbalO*. Itis called a state ifi¢|| = 1. If O has a unit
I then|jp|| = ¢(I) for any positive linear functionap.

A representation of? on a Hilbert spacé{ is ax-morphismr : © — B(H). Given such a representation and
a unit vector2 € H, the formulap(A) = (2|7(A)Q2) defines a state of?. The GNS construction shows that any
state onO is of this form.

Theorem 3.1 Letw be a state on thé'*-algebra®. Then there exist a Hilbert spaéé,,, a representatior,, of
O in H,, and a unit vectof},, € H such that

1. w(A) = Q|7 (A)Q,) forall A € O.
2. 1,(0)Q,, is dense irH,,,.

The triple (H.,, 7w, 2,) is unique up to unitary equivalence. It is called the GNS espntation or the cyclic
representation o induced by the state.

An important object associated with the GNS representasidine enveloping von Neumann algebra: he
weak closure),, of 7, (O) in B(H,,). By von Neumann'®icommutantheorem, it is given by the bicommutant

O, = 1,(0)".

We note that ifO is itself a von Neumann or® *-algebra and is o-weakly continuous (i.e., aormalstate) then
7, 1S o-weakly continuous an@,, = 7, (O).

Two statesv, » on O are quasi-equivalent if there exists-ssomorphismyp : O,, — O, such thatr, = ¢om,,.
The folium of a statev is the setV,, of all states of the fornv(A4) = trpm,(A) for some density matrix on
H,,. A stater € N, is said to bes-normal. Thusw-normal states o® are characterized by the fact that they

extend to normal states on the enveloping von Neumann ag@&br

Theorem 3.2 The following propositions are equivalent.

1. p andv are quasi-equivalent.



2. i andv have the same folium.

3. There exists Hilbert spacds, andC,, and a unitary mag/ : H, ® K, — H, ® K, such that

mI=V(r, @ )V".

The reader should consult [BR1] for a more detailed discussi
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