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1 Why operator algebras?

The quantum mechanical description of a system involving only a finite number of particles or degrees of freedom
(a finite system) is given by a Hilbert spaceH and a HamiltonianH, a self-adjoint operator onH. States of the
system are described by unit vectorsψ ∈ H or more generally statistical mixtures, i.e.,densitymatrices. Physical
quantities, or observables, are self-adjoint operators onH. The time evolution of the system is governed by its
Hamiltonian. In the Schrödinger picture the state evolves according to the Schrödinger equationi∂tψt = Hψt

while observables are time-independent. In the equivalentHeisenberg picture the state is time-independent and
observables evolve according to the Heisenberg equation∂tAt = i[H,At]. As a consequence of the tight relation
between Hamiltonian and dynamics, the spectrumsp(H) of H contains a lot of information about the physics of
the system.

From a mathematical perspective the construction ofH andH for a given physical system is a problem of
representation theory. In the case of a non-relativistic system ofN pointlike particles in Euclidean spaceR

3, the
correspondence between the classical Hamiltonian description and the quantum description is given bycanonical
quantization. This procedure provides a representation ofthe positionsQ1, . . . , Q3N and conjugate canonical
momentaP1, . . . , P3N by self-adjoint operators satisfying thecanonicalcommutationrelations (CCR)

i[Pi, Qj ] = δij , i[Pi, Pj ] = 0, i[Qi, Qj ] = 0.

Physics imposes other constraints. If the particles have spin thenH has to carryN representations of the Lie algebra
of SU(2), the quantum mechanical rotation group. If the particles are indistinguishable then Pauli’s principle
imposes a definite covariance (as prescribed by the spin-statistic theorem) with respect to the natural action of the
symmetric groupSN onH.

The deep fact about finite systems is that the resulting quantum description is unique, up to unitary transfor-
mations and mostly irrelevant multiplicity. This is the content of the celebratedStone-vonNeumann theorem (see
[Ro] for a review). In particular the spectrum of the Hamiltonian of the system is uniquely determined (again up
to some global multiplicity which can usually be reduced by super-selection rules).

When dealing with systems with an infinite number of particlesor degrees of freedom – quantum fields or
quantum statistical mechanics in the thermodynamic limit –we are faced with a radically different situation.
The breakdown of Stone-von Neumann theorem implies the existence of a large number of unitary inequivalent
irreducible representations of the CCR. This phenomenon isnot a special feature of CCR. The following example
shows that it occurs also for representations of the groupSU(2) (see also [Th]).

Consider an infinite chain of quantum spinss = 1/2. To each sitex ∈ Z we associate observablesσ(1)
x , σ(2)

x

andσ(3)
x which satisfy theSU(2) commutation relations

[σ(j)
x , σ(k)

y ] = 2iδxyǫjklσ
(l)
x . (1)
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The Hamiltonian is formally given byH = J
∑

x∈Z
σ

(3)
x so that

i[H,σ(j)
x ] = −2Jǫ3jkσ

(k)
x . (2)

Sethx = C
2 for anyx ∈ Z. The naive candidate for the Hilbert space of the system is the maximal tensor

product of all the spaceshx, which we will denote⊗x∈Zhx. It is defined as the completion of the pre-Hilbert space
spanned by vectors of the form⊗x∈Zϕx, where eachϕx is a unit vector inhx. The inner product between two
such vectors is defined by

(⊗x∈Zψx | ⊗x∈Z ϕx) =
∏

x∈Z

(ψx |ϕx), (3)

whenever the infinite product on the left of (3) is absolutelyconvergent. Otherwise, the inner product on the right
of (3) is set to be zero. The space⊗x∈Zhx was first considered by von Neumann in [VN] (he called it the complete
direct product of the family(hx)x∈Z). This space is much too big for most applications. In particular, it is not
separable, i.e., it does not have a countable orthonormal basis1.

Let us describe another candidate for the notion of the infinite tensor product, which is more useful in quantum
physics. For allx ∈ Z fix an orthonormal basis{χ−

x , χ
+
x } of hx. To each finite subsetX ⊂ Z associate the vector

eX =

(

⊗

x∈X

χ+
x

)

⊗





⊗

x∈Z\X

χ−
x



 .

According to (3) one has(eX |eY ) = δXY . Thus, finite linear combinations of the vectorseX form a pre-Hilbert
space. The Hilbert spaceH obtained by completion is separable since{eX |X ⊂ Z, |X| < ∞} is a countable
orthonormal basis.

We note that a pair(h, χ), whereh is a Hilbert space andχ ∈ h a unit vector, is called a grounded Hilbert
space. The above construction is a special case of the tensorproduct of grounded Hilbert spaces, namelyH =
⊗x∈Z(hx, χ

−
x ). The interested reader should consult [BSZ] for the generalconstruction.

Remark that the maximal tensor product⊗x∈Zhx naturally splits into the direct sum of sectors, where each
sector has the form⊗x∈Z(hx, χ

−
x ) for a certain sequence of unit vectorsχ−

x ∈ hx.
If J > 0 then the ground state of the chain has all spins pointing downin direction3. If we interpretχ±

x as
the eigenstate of the spin atx in direction3 with eigenvalue±1/2 then the vectore∅ clearly describes this ground
state. Then the vectoreX describes a local excitation of the chain, the spins atx ∈ X pointing up in direction3.
This immediately leads to the following representation of the commutation relations (1) onH

σ(1)+
x eX = eX⊙x, σ(2)+

x eX = isX(x)eX⊙x, σ(3)+
x eX = sX(x)eX ,

where

X ⊙ x =

{

X \ {x} if x ∈ X,
X ∪ {x} if x 6∈ X,

sX(x) =

{

+1 if x ∈ X,
−1 if x 6∈ X.

We get a different representation of the commutation relations (1) if we think ofχ±
x as the eigenstate of the spin in

direction3 with eigenvalue∓1/2, namely

σ(1)−
x = σ(1)+

x , σ(2)−
x = −σ(2)+

x , σ(3)−
x = −σ(3)+

x .

By constructionσ(3)+
x e∅ = −e∅ for all x ∈ Z but one easily checks that there is no unit vectorΨ ∈ H such that

σ
(3)−
x Ψ = −Ψ for all x ∈ Z. Thus, in the second representation of the system the groundstatedoes not belong to

H. In particular, there is no unitary operatorU onH such thatUσ(3)−
x U∗ = σ

(3)+
x : The two representations are

inequivalent. From the fact that
eY =

∏

x∈X∆Y

σ(1)±
x eX ,

1Except for recent developments in quantum gravity most Hilbert spaces of quantum physics are separable.
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it follows that the two representations are also irreducible.
Expressing the formal HamiltonianH in the two representations leads to

HeX = J
∑

x∈X

±eX + J
∑

x6∈X

∓eX =

(

±2J |X| ∓ J
∑

x∈Z

1

)

eX .

Discarding a constant – the infinite energy of the statee∅ – we may thus set

H±eX = ±2J |X|eX ,

which defines two self-adjoint operators onH. The physical meaning ofH± is quite clear: It gives the energy of
the system relative to the infinite energy of the statee∅. One easily verifies that

i[H±, σ
(j)±
x ] = −2Jǫ3jkσ

(k)±
x ,

i.e., that the commutation relations (2) are satisfied. Notehowever that the spectra of the two Hamiltonians are
quite different

sp(H±) = ±2JN.

Of course this does not come as a surprise sinceH± measures the energy relative to two distinct reference states:
One of them has all spins up while the other has all spins down.

In conclusion, there is no natural way to represent the algebraic structure induced by commutation relations
(1), (2) in a Hilbert space. To select such a representation one needs to specify a reference state. In equilibrium
statistical mechanics this fact does not lead to difficulties since it is always possible to define thermodynamic
quantities (free energy, pressure, ...) as limits of quantities related to finite systems. The situation is different in
non-equilibrium statistical mechanics where dynamics plays a much more important role. To give a mathemati-
cally precise sense to non-equilibrium steady states for example requires the consideration of infinite systems (see
[Nonequilibrium Steady States], [NESS in Quantum Statistical Mechanics]).

In the algebraic approach to quantum mechanics the central object is the algebraic structure – in the above
example, Relations (1) and (2). Hilbert spaces and Hamiltonians only appear when this structure gets represented
by linear operators. Such representations are induced by the states of the system, usually via the Gelfand-Naimark-
Segal construction (see Section 3 below). States with different physical properties (e.g., different particle or energy
density) lead to inequivalent representations and hence todifferent spectral properties of the Hamiltonian describ-
ing the dynamics.

The mathematical framework of the algebraic approach to quantum mechanics is the theory ofoperator al-
gebras.C∗-algebras,von Neumannalgebras andW ∗-algebras are the most commonly used types of operator
algebras in this context. There is a huge literature devotedto the subject. Besides [Operator Algebras], [von Neu-
mann Algebras – General Theory], the reader may consult [D1,D2, KR, S, SZ, T] for mathematical introductions
and [BR1, BR2, BSZ, H, R, Si, D] for applications to quantum physics and statistical mechanics.

2 Examples of C∗-algebras

To illustrate the algebraic approach we consider a few systems for whichC∗-algebras provide a natural framework
(see also [Free Bose and Fermi gases – the algebraic approach]). We shall only be concerned with operator algebras
here. We refer to [Quantum Dynamical Systems] for examples of dynamics on these algebras.

2.1 Lattice spin systems

To describe aquantumspinsystem on the infinite latticeΓ (for exampleΓ = Z
d, with d > 1) let h be the finite

dimensional Hilbert space of a single spin and associate a copy hx of h to eachx ∈ Γ. For finite subsetsΛ ⊂ Γ set
hΛ ≡ ⊗x∈Λhx and define the localC∗-algebras

AΛ ≡ B(hΛ).
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If Λ ⊂ Λ′, the natural isometric injectionA 7→ A ⊗ IhΛ′\Λ
allows to identifyAΛ with a subalgebra ofAΛ′ . With

this identification it is possible to define

‖A‖ = ‖A‖AΛ
if A ∈ AΛ,

unambiguously for allA ∈ Aloc ≡ ∪Λ⊂ΓAΛ, the union being over finite subsets ofΓ. This defines aC∗-norm on
the∗-algebraAloc. Denote byA = A(Γ, h) theC∗-algebra obtained as norm completion ofAloc. We can identify
each local algebraAΛ with the corresponding subalgebra ofA, hence

A =

(

⋃

Λ⊂Γ

AΛ

)cl

, (4)

where eachAΛ is a full matrix algebra.C∗-algebras of this type are called uniformly hyperfinite (UHF) or Glimm-
algebras.

2.2 CAR algebras

Let h be the Hilbert space of a singlefermion (typicallyh = L2(Rd) ⊗ C
n, but other geometries and additional

internal degrees of freedom may lead to different single particle Hilbert spaces). A system of such fermions is
described by thesecondquantization formalism. Denote byΓa(h) the fermionic (or anti-symmetric)Fockspace
over h. The fermioncreation/annihilationoperators a∗(f), a(f) are bounded operators onΓa(h) satisfying the
Canonical Anti-commutation Relations (CAR)

[a(f), a∗(g)]+ = (f |g)I, [a(f), a(g)]+ = 0, (5)

for all f, g ∈ h. A convenient choice of observables is the set of polynomials in a, a∗, i.e., the set of finite linear
combinations of monomials

a#(f1) · · · a#(fn),

where eacha# stands for eithera or a∗ and thefj are elements ofh or more generally of some subspaceh0 ⊂ h.
This set is clearly a unital∗-algebra. Its norm closure is aC∗-subalgebra ofB(Γa(h)). It turns out that this algebra
is completely characterized byh0 and the CAR (5).

Theorem 2.1 Let h0 be a pre-Hilbert space. Up to∗-isomorphisms, there exists a unique unitalC∗-algebra
CAR(h0) with the two following properties:

(i) There exists an anti-linear mapa : h0 → CAR(h0) such that the CAR (5) hold for anyf, g ∈ h0.

(ii) The set of monomials{a#(f1) · · · a#(fn) | f1, . . . , fn ∈ h0} is total in the algebraCAR(h0).

Remarks. 1. Forf 6= 0, Equ. (5) yields thata(f) 6= 0 and that(a∗(f)a(f))2 = ‖f‖2a∗(f)a(f). Thus

‖a(f)‖ = ‖f‖, (6)

holds for anyf ∈ h0. In particular, the mapa is continuous, extends to the completionh of h0 andCAR(h) =
CAR(h0).
2. By condition(ii) the algebraCAR(h) is separable if and only if the Hilbert spaceh is.
3. An antilinear mapf 7→ b(f) from h to B(H) satisfying (5) extends to a faithful representation ofCAR(h) in
the Hilbert spaceH.

A direct consequence of this theorem is the following
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Corollary 2.2 Let h1, h2 be two Hilbert spaces. Assume that the bounded linear mapU : h1 → h2 and the
bounded anti-linear mapV : h1 → h2 satisfy

U∗U + V ∗V = Ih1
, UU∗ + V V ∗ = Ih2

,

U∗V + V ∗U = 0 , UV ∗ + V U∗ = 0.

Then there exists a unique∗-isomorphismγ : CAR(h1) → CAR(h2) such that

γ(a(f)) = a(Uf) + a∗(V f).

γ is called the Bogoliubov isomorphism induced by the pair(U, V ). If V = 0 thenU must be unitary. In this
case we say thatγ is the Bogoliubov isomorphism (or automorphism ifh1 = h2) induced byU .

When dealing with compound Fermi systems the following result is often useful.

Theorem 2.3 (Exponential law for fermions) Leth1, h2 be two Hilbert spaces. There is a unique unitary oper-
atorU : Γa(h1 ⊕ h2) → Γa(h1) ⊗ Γa(h2) such that

UΩF = ΩF ⊗ ΩF, Ua(f1 ⊕ f2)U
∗ = a(f1) ⊗ I + (−1)N ⊗ a(f2),

whereΩF denotes the Fock vacuum vector andN = dΓ(I) the number operator.

Note thatN ∈ CAR(h1) if and only if h1 is finite dimensional. Thus,CAR(h1 ⊕ h2) is ∗-isomorphic to the
C∗-tensor productCAR(h1) ⊗ CAR(h2) if and only if at least one of the spaceh1, h2 is finite dimensional.

2.3 CCR algebras

Systems ofbosons are described in an analogous way by creation/annihilation operatorsa∗(f) anda(f) on the
bosonic (or symmetric) Fock spaceΓs(h). These operators satisfy the Canonical Commutation Relations

[a(f), a∗(g)] = (f |g), [a(f), a(g)] = 0, (7)

for f, g ∈ h. However, dealing with bosonic systems is more delicate since the operatorsa∗(f) anda(f) are
unbounded. This follows readily from the algebraic structure described by the CCR. Indeed, suppose thata(f)
is bounded, then sincea∗(f)a(f) is positive it follows from the CCR that‖a(f)a∗(f)‖ = ‖a∗(f)a(f)‖ + ‖f‖2

which contradicts the fact that‖a(f)a∗(f)‖ = ‖a∗(f)a(f)‖ = ‖a(f)‖2.
Thus it is not a priori clear how to interpret the CCR without referring to some domainD ⊂ Γs(h) on which

they are supposed to hold. The operator
1√
2

(a∗(f) + a(f)) ,

is essentially self-adjoint on the dense subspaceΓs,fin(h) of finite particle vectors ofΓs(h). Its selfadjoint clo-
sure is called Segal field operator and denoted byφ(f). Segal field operators satisfy the commutation relations
[φ(f), φ(g)] = i Im(f |g) which are formally equivalent to (7). The unitary operators

W (f) = eiφ(f),

are called Weyl operators. They satisfy the Weyl relations

W (f)W (g) = e−i Im(f,g)/2W (f + g). (8)

Finite linear combinations of Weyl operators build a∗-algebra. Its closure is aC∗-algebra which is completely
characterized by the Weyl relations (8).

Theorem 2.4 Let h0 be a pre-Hilbert space. Up to∗-isomorphisms, there exists a unique unitalC∗-algebra
CCR(h0) with the following properties:
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(i) There is a mapf 7→W (f) fromh0 to CCR(h0) such that

W (−f) = W (f)∗, W (0) 6= 0,

and the Weyl relations (8) are satisfied for allf, g ∈ h0.

(ii) The set{W (f) | f ∈ h0} is total inCCR(h0).

Remarks. 1. It follows from (8) and conditions (i)-(ii) thatW (0) = I and thatW (f)∗ = W (f)−1, i.e., thatW (f)
is unitary. Moreover, iff 6= g then‖W (f) −W (g)‖ = 2.
2. Unlike in the CAR-case, ifh0 6= h1 thenCCR(h0) 6= CCR(h1). Moreover,CCR(h0) is not separable if
h0 6= {0}.
3. A map f 7→ Wπ(f) from h0 to the unitary operators onH satisfying the Weyl relations (8) extends to a
representation(H, π) of CCR(h0).

Bogoliubov isomorphisms between CCR algebras are defined ina similar way than in the CAR case.

Corollary 2.5 Let h1, h2 be two pre-Hilbert spaces andU : h1 → h2 an invertible real-linear map such that
Im(Uf |Ug) = Im(f |g). Then there is a unique∗-isomorphismγ : CCR(h1) → CCR(h2) such thatγ(W (f)) =
W (Uf).

An exponential law similar to Theorem 2.3 holds for bosons.

Theorem 2.6 (Exponential law for bosons) Leth1, h2 be two Hilbert spaces. There is a unique unitary operator
U : Γs(h1 ⊕ h2) → Γs(h1) ⊗ Γs(h2) such that

UΩF = ΩF ⊗ ΩF, UW (f1 ⊕ f2)U
∗ = W (f1) ⊗ I + I ⊗W (f2),

whereΩF denotes the Fock vacuum vector. Thus,CCR(h1 ⊕ h2) is ∗-isomorphic to theC∗-tensorproduct
CCR(h1) ⊗ CCR(h2).

In practice theC∗-algebraCCR(h0) of Theorem 2.4 is not very convenient and one often prefers towork with
von Neumann algebras when dealing with bosons. Let(H, π) be a representation ofCCR(h0). The von Neumann
algebra onH generated by{π(A) |A ∈ CCR(h0)} is given by thebicommutant

Mπ(h0) = π(CCR(h0))
′′.

It is the enveloping von Neumann algebra of the representationπ (see [Free Bose and Fermi gases – the algebraic
approach] for an example).

2.4 Quasi-local structure of A(Γ, h) and CAR(h)

As already mentioned, in most physical applications the single fermion Hilbert space ish = L2(Rd) ⊗ C
n or

some straightforward variant of it. We can assign to each bounded open subsetΛ ⊂ R
d a local Hilbert space

hΛ = L2(Λ) ⊗ C
n. The canonical isometric injectionshΛ →֒ h yield injectionsCAR(hΛ) →֒ CAR(h) which

allow us to identify the local algebraCAR(hΛ) with aC∗-subalgebra ofCAR(h). It follows immediately from
remark 1 that

CAR(h) =





⋃

Λ⊂Rd

CAR(hΛ)





cl

,
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which should be compared with Equ. (4). Note however that while Λ ∩ Λ′ = ∅ implies [AΛ,AΛ′ ] = {0}, the
CAR algebras of disjoint subsets do not commute. This is of course due to the fact thata(f) anda(g) rather
anticommute. Letθ be the∗-automorphism defined byθ(a(f)) = −a(f) and denote by

CAR±(h) = {A ∈ CAR(h) | θ(A) = ±A},

the even and odd parts ofCAR(h) with respect toθ. Alternatively, these are the closed linear spans of monomials
of even and odd degrees in thea#. Then one hasCAR(hΛ) = CAR+(hΛ) ⊕ CAR−(hΛ) and one easily checks
that

[CAR±(hΛ),CAR±(hΛ′)] = {0}, [CAR±(hΛ),CAR∓(hΛ′)]+ = {0}.
From a physical point of view observables localized in disjoint regions of space should be simultaneously mea-
surable. Hence physical observables of a fermionic system should be elements of the even subalgebraCAR+(h).
In fact, the stronger requirement of gauge-invariance further reduces the observable algebra to the subalgebra of
CAR+(h) generated by monomials in thea# containing the same number ofa anda∗ (see [Araki-Wyss Rep-
resentation] for a discussion of this point). In both the UHF-algebraA and the CAR-algebraCAR(h), the local
subalgebras define a so called quasi-local structure. We refer to Section 2.6 of [BR1] for a general discussion.

3 States and the GNS construction

Let O be aC∗-algebra. A linear functionalϕ onO is positive ifϕ(A∗A) ≥ 0 for all A ∈ O. A positive linear
functional is automatically bounded, i.e., an element of the dualO#. It is called a state if‖ϕ‖ = 1. If O has a unit
I then‖ϕ‖ = ϕ(I) for any positive linear functionalϕ.

A representation ofO on a Hilbert spaceH is a∗-morphismπ : O → B(H). Given such a representation and
a unit vectorΩ ∈ H, the formulaϕ(A) = (Ω|π(A)Ω) defines a state onO. The GNS construction shows that any
state onO is of this form.

Theorem 3.1 Letω be a state on theC∗-algebraO. Then there exist a Hilbert spaceHω, a representationπω of
O in Hω and a unit vectorΩω ∈ H such that

1. ω(A) = (Ωω|πω(A)Ωω) for all A ∈ O.

2. πω(O)Ωω is dense inHω.

The triple (Hω, πω,Ωω) is unique up to unitary equivalence. It is called the GNS representation or the cyclic
representation ofO induced by the stateω.

An important object associated with the GNS representationis the enveloping von Neumann algebra: Theσ-
weak closureOω of πω(O) in B(Hω). By von Neumann’sbicommutanttheorem, it is given by the bicommutant

Oω = πω(O)′′.

We note that ifO is itself a von Neumann or aW ∗-algebra andω is σ-weakly continuous (i.e., anormalstate) then
πω is σ-weakly continuous andOω = πω(O).

Two statesω, ν onO are quasi-equivalent if there exists a∗-isomorphismφ : Oω → Oν such thatπν = φ◦πω.
The folium of a stateω is the setNω of all states of the formν(A) = trρπω(A) for some density matrixρ on

Hω. A stateν ∈ Nω is said to beω-normal. Thus,ω-normal states onO are characterized by the fact that they
extend to normal states on the enveloping von Neumann algebraOω.

Theorem 3.2 The following propositions are equivalent.

1. µ andν are quasi-equivalent.
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2. µ andν have the same folium.

3. There exists Hilbert spacesKµ andKν and a unitary mapV : Hµ ⊗Kµ → Hν ⊗Kν such that

πν ⊗ I = V (πµ ⊗ I)V ∗.

The reader should consult [BR1] for a more detailed discussion.
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