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1 Modular states

Let M be avonNeumannalgebra acting on the Hilbert spaceH. Its commutant

M
′ = {A ∈ B(H) |AB = BA for all B ∈ M}

is also a von Neumann algebra. Von Neumann’sbicommutanttheorem states thatM′′ = M.

Definition 1 A vectorΨ ∈ H is cyclic forM if the subspaceMΨ is dense inH. It is separating forM if AΨ = 0
for someA ∈ M impliesA = 0. It is modular if it is both cyclic and separating forM.

A vectorΨ ∈ H is separating forM if and only if the corresponding normal stateωΨ(A) = (Ψ|AΨ) is faithful.
The supportsω of a normalstateω onM is the smallest orthogonal projectionP ∈ M such thatω(P ) = 1. It

follows thatω(A∗A) = 0 if and only if Asω = 0. In particular,ω is faithful if and only ifsω = I.

Lemma 2 The support of the vector stateωΨ is the orthogonal projection on the closure ofM
′Ψ. Consequently,

a vectorΨ ∈ H is separating forM if and only if it is cyclic forM′.

Remark. SinceM
′′ = M, it follows thatΨ is cyclic forM if and only if it is separating forM′.

Let O be aC∗-algebra andω a state onO. Denote by(Hω, πω,Ωω) the GNS representation ofO induced by
ω.

Definition 3 The stateω is modular if the vectorΩω is modular for the enveloping von Neumann algebraOω =
πω(O)′′.

Note that the stateω is modular if and only if the vector state induced byΩω is faithful onOω. This does not
imply, nor is it implied by the faithfulness ofω. However, ifO is a von Neumann algebra then a faithful normal
stateω is modular.

The following result links modular theory with the theory ofKMS states. It is often useful in applications to
statistical mechanics.

Theorem 4 Let (O, τ) be aC∗- or W ∗-dynamical system. Any(τ, β)-KMS state,β ∈ R, is modular.
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2 Modular structure

Let Ψ be a modular vector forM. SinceΨ is separating forM

AΨ 7→ A∗Ψ,

defines an anti-linear involutionS0 of MΨ. Inspection of the graph ofS0 and the fact thatΨ is cyclic forM′ show
thatS0 is closable and that its closureS is involutive. SinceΨ is cyclic forM, S is densely defined and hence has
a densely defined adjointS∗ = S∗

0 . Define the self-adjoint operator∆ = S∗S and write the polar decomposition
of S asS = J∆1/2. SinceS is injective and has dense rangeJ is anti-unitary. FromI = S2 = J∆1/2J∆1/2 we
conclude thatJ∆1/2 = ∆−1/2J∗. It follows thatJ2∆1/2 = J∆−1/2J∗ and the unicity of the polar decomposition
yieldsJ2 = I, i.e.,J = J∗.

Definition 5 The positive self-adjoint operator∆ is the modular operator and the anti-unitary involutionJ the
modular conjugation of the pair(M,Ψ).

The deep algebraic properties of the modular operator and conjugation are the content of Tomita-Takesaki’s
theorem:

Theorem 6 Let Ψ be a modular vector for the von Neumann algebraM. If ∆ and J are the corresponding
modular operator and modular conjugation then the following hold:

1. JMJ = M
′.

2. For anyt ∈ R one has∆it
M∆−it = M.

Due to the unbounded nature ofS the proof of this theorem is technically involved. It was first published in
[T] but more compact expositions can be found e.g. in [BR1]. Atechnically simpler proof is [RVD].

Definition 7 The group of∗-automorphisms ofM defined byσt(A) = ∆itA∆−it is the modular group of the pair
(M,Ψ).

More generally, ifω is a faithful normal state on the von Neumann algebraO and∆ the modular operator of
(πω(O),Ωω) thenσt

ω(A) = π−1
ω (∆itπω(A)∆−it) is the modular group ofω.

The main property of the modular group is the following result due to Takesaki which can be seen as a reverse
of Theorem 4.

Theorem 8 Let ω be a faithful normal state on the von Neumann algebraO. Thenω is a KMS state for the
modular groupσω at inverse temperatureβ = −1. Moreover, the modular group is the only dynamics onO for
whichω has this property.

The modular conjugation allows to construct another central object of modular theory.

Definition 9 The natural cone associated to the pair(M,Ψ) is the closed subset ofH defined by

H+ = {AJAJΨ |A ∈ M}cl.

The most important properties of the natural cone are the following.

Theorem 10 The natural coneH+ is self-dual, i.e.,

H+ = Ĥ+ ≡ {Ω ∈ H | (Φ |Ω) ≥ 0 for all Φ ∈ H+}.

In particular,H+ is convex. Moreover, the following hold:

1. JΦ = Φ for all Φ ∈ H+.

2. AJAH+ ⊂ H+ for all A ∈ M.

3. JAJ = A∗ for all A ∈ M ∩ M
′.
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3 Standard representation

Definition 11 A quadruple(H, π, J,H+) is a standard representation of theW ∗-algebraM if π : M → B(H)
is a representation ofM, J an antiunitary involution onH andH+ a self-dual cone inH satisfying the following
conditions:

1. Jπ(M)J = π(M)′;

2. Jπ(A)J = π(A)∗ for all A in the center ofM;

3. JΨ = Ψ for all Ψ ∈ H+;

4. π(A)Jπ(A)H+ ⊂ H+ for all A ∈ M.

One of the key result in the theory ofW ∗-algebras is the following.

Theorem 12 AnyW ∗-algebraM has a faithful standard representation. Moreover, this representation is unique,
up to unitary equivalence.

If M is separable it has a faithful normal stateω and Theorem 10 shows that the corresponding GNS represen-
tation is standard. This is in particular the case of von Neumann algebras over separable Hilbert spaces which are
most often encountered in physical applications. See [SZ] for the general case.

The standard representation has two properties which are ofcrucial importance in the study of quantum dy-
namical systems. The first one deals with normal states.

Theorem 13 Let (H, π, J,H+) be a standard representation ofM. Any normal stateω onM has a unique vector
representativeΦω ∈ H+ such thatω(A) = (Φω|π(A)Φω). Moreover,

‖Φω − Φν‖ ≤ ‖ω − ν‖ ≤ ‖Φω − Φν‖ ‖Φω + Φν‖,

holds for all normal statesω, ν. Thus, there is an homeomorphic correspondence between normal states and unit
vectors ofH+. Finally, (π(M)Φω)

cl
= J (π(M)′Φω)

cl, and in particular

ω is faithful⇔ Φω is separating forπ(M) ⇔ Φω is cyclic forπ(M).

The second property concerns the unitary implementation of∗-automorphisms ofM in a standard represen-
tation (H, π, J,H+). Denote byAut(M) the topological group of∗-automorphisms ofM with the topology
of pointwiseσ-weak convergence. Let alsoU be the set of unitaries ofH such thatUπ(M)U∗ = π(M) and
UH+ ⊂ H+. Equipped with the strong operator topologyU is a topological group andτU (A) = π−1(Uπ(A)U∗)
defines a continuous morphismU → Aut(M).

Theorem 14 The mapU 7→ τU is a topological isomorphism. Moreover, for anyU ∈ U and any normal stateω
onM one has

1. JUJ = U .

2. Uπ(M)′U∗ = π(M)′.

3. U∗Φω = Φω◦τU
.

In particular, if(M, τ) is aW ∗-dynamical system then there exists a unique self-adjoint operatorL onH such
thatπ(τ t(A)) = eitLπ(A)e−itL andeitLH+ ⊂ H+.
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Definition 15 The generatorL is called standard Liouvillean of the dynamical system(M, τ).

The standard Liouvillean is uniquely defined up to unitary equivalence. Ifω is a modularτ -invariant state then
the induced GNS representation is standard and theω-Liouvillean (see Section 3 in [Quantum dynamical systems])
coincide with the standard Liouvillean. This is in particular the case ifω is a KMS state forτ .

The spectral properties of the standard Liouvillean are intimately related to the properties of the corresponding
dynamical system. As an illustration, the following resultis a direct consequence of Theorem 13 (see [Quantum
Koopmanism] for more information on this subject).

Theorem 16 LetL be the standard Liouvillean of theW ∗-dynamical system(M, τ).

1. L has no eigenvalues if and only if there is no normalτ -invariant state onM.

2. Ker(L) is one-dimensional if and only if there is a unique normalτ -invariant stateω onM. In this caseΦω

is the unique unit vector inKer(L) ∩H+.

4 The finite dimensional case

It is instructive to work out the standard representation ofa finite dimensional von Neumann algebraM ⊂ B(CN ).
This case is particularly simple sinceB(CN ) is itself a Hilbert space for the inner product(X|Y ) = tr(X∗Y ).
One hasB(CN ) = M ⊕ M

⊥ and the predualM∗ can be identified withM. Since anyA ∈ M can be written as a
linear combination of4 non-negative elements ofM it is easy to see that there exists a basisρ1, . . . , ρn of M such
thatρj ≥ 0 andtr ρj = 1. It follows that

ω =
1

n

n∑

j=1

ρj ,

defines a faithful state onM. ConsiderH = M as a Hilbert space (a subspace ofB(CN )). ThenΩ = ω1/2

is a unit vector inH. Moreover, the mapπ : M → B(H) defined byπ(A)X = AX is a ∗-morphism such
that ω(A) = (Ω|π(A)Ω). Denote byP the orthogonal projection on(Kerω)⊥. Clearly P ∈ M and since
ρj ≥ 0 one hasKer ω ⊂ ∩jKer ρj and henceKer ω ⊂ Ker A for all A ∈ M. It follows thatRan A ⊂ Ran P

and henceA = PA for all A ∈ M. Since the last identity is equivalent toA∗ = A∗P we conclude that
A = AP = PA = PAP for all A ∈ M, i.e., thatP is the unit ofM. Since there existsT ∈ M such that
Tω1/2 = P we can writeπ(XT )Ω = X and conclude thatπ(M)Ω = H. We have shown that(H, π,Ω) is the
GNS representation ofM induced byω. Note that sinceω is a normal faithful state, this representation is itself
faithful.

The formulasJX = X∗ and∆1/2X = ω1/2XT define an anti-unitary involution and a positive self-adjoint
operator onH such that

J∆1/2π(A)Ω = π(A)∗Ω.

Thus,J and∆ are the modular conjugation and the modular operator of the pair (π(M),Ω).
Elements of the natural cone are given byπ(A)Jπ(A)Ω = Aω1/2A∗ from which we can conclude that

H+ = {A ∈ M |A ≥ 0},

and one easily checks the validity of Theorem 10.
Let C be an element ofπ(M)′. For allA ∈ M andX ∈ H one has

C(AX) = C(π(A)X) = π(A)(C(X)) = AC(X).

SettingX = P , the unit ofM, andB = C(P ) ∈ M, we getC(A) = AB. We conclude thatπ(M)′ consists of the
linear mapsX 7→ XB with B ∈ M. Thus,Jπ(M)J = π(M)′ and we have obtained the standard representation
of the finite dimensional von Neumann algebraM.

Any normal stateν on M is given byν(A) = tr(ρA) for a density matrixρ ∈ M. It follows thatν 7→ Φν =
ρ1/2 ∈ H+ is the homeomorphism described in Theorem 13.
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