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Computationally simpler than many-body wave functions

In many circumstances better that quantum kinetic approaches (Boltzmann)
Well adapted to linear response calculations (Green-Kubo)...

... and perturbative techniques (diagrammatics, self-consistent schemes, ...)
Directly related to transport properties (currents, current-current correlations, ...)
... and fashionable!
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@ Mathematical foundations of NEGF’s formalism still missing.

o Keldysh path-ordering replaces usual time-ordering.
o Easy to formulate rigorously (but | won’t do it).

o Turns out to be a mere convenience tool to make non-equilibrium “look like” equilibrium.

@ Should be substituted by modular structure.

o So called “analytic continuation” is needed to convert Keldysh ordered expressions to
“real-time” ones. Misleading to mathematicians since this has nothing to do with what
they call analytic continuation.

@ Integral equations again play a central role.

o Self-energies encode the effects of interactions.
o Dyson type equations are either assumed or derived by diagrammatic arguments.
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One particle setup

The Sample

With S a finite set: the sample Hamiltonian hs acts on the Hilbert space hs = £2(S)

The Reservoirs
The Hamiltonian of the j-the reservoir is h; acting on b;. Set

WLOG: b; = L3(R, dy(E)), hj = E, ¢; =1

The Coupling

h="bs ®bhr, h=(hs ® hr) + hr
with the Tunneling Hamiltonian

M
hr =" d (I (8] + |5 (W)

=

and unit vectors ¢; € bs, ¥ € b;.
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() .ulcar(n;) 1s 7, -KMS at temperature B, and chemical potential ;.

[
o ()s,ulcar(p 5) is gauge invariant (but not necessarily quasi-free)

Interactions
Two-body potential (w(x, y) = w(y, x), w(x,x) =0, maxw(x,y) = 1)

1 >k L3
W= > > wx,y)a;axayay
X, yes

Interacting Hamiltonian K = H + ¢W and dynamics 7} (A) = el Ae~itK

Decoupled interacting Hamiltonian Kp = H — Hr = (Hs + EW) + Hz
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Motivation: non-interacting advanced/retarded Green’s functions
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Motivation: non-interacting advanced/retarded Green’s functions

Inhomogeneous time-dependent Schrédinger equation in K = L?(R,ds) ® b

(Q2¢)(s) = (i9s — h)p(s) = ¥(s)

has resolver
For ¢ € K[, the unique anti-causal/causal solution ¢ € K, is

loc C

ols) = (6F/"0)(9) = [ G§/"(s.5)u(s')as’

forz € Cx = |wiuney ~ vye wovunuwy vaiuco
GY/"(E) = Go(E £ i0)

exist as continuous operator on K;F = Lﬁm(R;, ds) ® b.

loc
Note: E can be absorbed into h, so WLOG we set E = 0.

Non-interacting advanced/retarded Green’s functions = integral kernels of Gg/’
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advanced/retarded Green’s functions J

(G (s, 8')g) = %i6(=(s' — )) ({7§ (a"(9) mi(a(}) |

12/24



Interacting Green’s function

advanced/retarded Green’s functions

(16" (s,8)g) = +i6((s ~ )) ({7& (& (@), TR(@M})

lesser/greater Green’s functions

(11G<(s.8)g) = +i (7% (a" (@)#(@(N),,

(1G> (5,5)9) = =i (r&(a)7 (2 (@)))

12/24



Interacting Green’s function

advanced/retarded Green’s functions

(16" (s,8)g) = +i6((s ~ )) ({7& (& (@), TR(@M})

lesser/greater Green’s functions
(11G<(s.8)g) = +i (7% (a" (@)#(@(N),,

(1G> (5,5)9) = =i (r&(a)7 (2 (@)))

Keldysh Green’s function & spectral function

(16K (s,8)9) = (f1G=(5,) + G (5,8)lg) = +i {[7F (& (o). 7i(a(N)])
(flA(s. s')g) = i(f]G'(s, ') — G%(s.5)\g)
=i(f1G™(s,8) = G=(s,9)lg) =i { (% (@ (), r&(a})
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Decoupled reservoir Green'’s functions are one-particle objects

For f,g € b;:
(1G5 (5.5)9) = i6((s — ) ({&, (@ (@), TR (@)
= +if(+(s — 8))(f]S ~Mig)
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The Langreth identity
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The Langreth identity

Decoupled reservoir Green'’s functions are one-particle objects

Theorem 1

(1G<(t, #))) :d,-/o (&G (t, )| o) (1 GS (5, Uiy
+"’/‘G‘ (T.S) '>/‘<’U’/\G/%(S~ t/)wj»ds

Using the Duhamel formula

(A =l () + [ Ry Aas
the interaction picture
Th(A) = TiTj (AT, 10Tt = Ty (Hr)Tt
the anti-commutation relations and the KMS property, the proof reduces to some

elementary algebra (no Keldysh contour integral nor “analytic continuation” needed).
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The Jauho-Meir-Wingreen formula

Both the local carrier density in the sample and the current from the reservoirs are
easily expressed in terms of interacting lesser Green’s functions

p(x, 1) = <T,Q(a;ax)>5 = Im(x|G=(t, )x)

e

(1) = i) (i@ ()a()) — & (¢))alsy)) | = 20Re(6]G= (1, t0vy)
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The Jauho-Meir-Wingreen formula

Both the local carrier density in the sample and the current from the reservoirs are
easily expressed in terms of interacting lesser Green’s functions

o) = (ri(@an) | = Im(x|G=(t,0)x)

(1) = i) (i@ ()a()) — & (¢))alsy)) | = 20Re(6]G= (1, t0vy)

Theorem 1 then immediately yields

t .
Ii(t) = —2d/21m/ ds/du,-(E)el(f*S>E<¢,-|G<(z, )+ G'(t,8)(1 + A E—1))~T|g))
0

The calculation of transient density and currents is thus reduced to that of the
interacting sample Green’s functions matrices

[(XIG”<(s,8")[V)xyes
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Nonequilibrium self-energies & Dyson equations J
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Advanced/Retarded Dyson Equations

There exists continuous maps
Ry xRy 3 (s,8) — £7(s,8") € L(hs)

such that the following Dyson equations hold
G/t ¥) = GI/'(1, 1) +/ ds/ as'GZ/"(t, 5)=%/"(s,8') G/ (', )
0 0
_ pajr / o e 1 ajr a/r INAAT ol o
=Gy (1, 1)+ dr ar'G'(t, s)x%'(s,s") G, " (s, 1)
0 0

Moreover the irreducible self-energy £2/7(s, ') is an entire analytic function of the
coupling constant &.
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Advanced/Retarded Dyson Equations

There exists continuous maps
Ry xRy 3 (s,8) — £7(s,8") € L(hs)

such that the following Dyson equations hold
GYr(t,t) = G/t t’)+/ ds/ as' G/ (t, )£/ (s, ') G¥/"(s/, 1)
0 0
=G/t ey + [ ar [T ar e (4, 9 (5,86 (5, )
0 0

Moreover the irreducible self-energy £2/7(s, ') is an entire analytic function of the
coupling constant &.

Observe that these Dyson equations can be restricted to the sample. So, for given
self-energy they give a finite dimensional integral equation for the sample interacting
r/a-Green'’s functions. This equation can be solved by geometric series

G=Go+GZG = G=Y Go(XGo)" = Go(I-XGo)™"
N>0
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Truncating the lesser Green’s function

Using the Duhamel formulas
t t !
L (A) = 7,(A) +g/0 % (iw,r5(A)) ds
t
-
o 7o

TH(A) = Tl (A) + i[Hr, 7{75(A)]) ds

one shows

Assume that the restriction of the initial state to the sample is the vacuum state and
define a linear operator on hs by its matrix elements
S<

xx!

(s,8) =i(T(s)Tx(s >§‘L

where )
7;(5) = a(CIShDhT(SX) + éT;(aX VX)7 VX = Z W(va)a;ay
YES

Then, for ¢, ¢’ € bs

(G|G<(t, t')¢') = /Oo ds /Oo ds' (6| Gh(, $)S<(s, ) Ga(s', 1))
0 0
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Lesser Dyson Equation

Combining the Lemma with Theorem 2 one gets

Assume that the restriction of the initial state to the sample is the vacuum state. There
exists a continuous map

R+ X RJr > (57 S,) — Z<(Sv S,) € L(bS)
such that, for ¢, ¢’ € bs,
GIG<(1)0) = [ ds [ a8 (9l (6, )T (5,5)G%(S', 1))
0 0

Moreover the irreducible self-energy ¥<(s, s’) is an entire analytic function of the
coupling constant &.
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Ideas for the proof of Theorem 2

For +Imz > 0

(PlG @) = [as [ s (N @ M),

defines a bounded operator on K = L2(R, ds) ® h such that
G*(2)* = GT(2), G*(2)KfcCKs

20/24



Ideas for the proof of Theorem 2

For +Imz > 0

(PlG @) = [as [ s (N @ M),

defines a bounded operator on K = L2(R, ds) ® h such that
G*(2)* = GT(2), G*(2)KfcCKs

By explicit calculation and some integration by parts, one shows that
(Q-2)GE(2)(Q-2)=Q+3F(2) -z

where % (z) denotes the bounded operator on K = L2(R,ds) ® s given by
(E*@0)s) = vin(s)o(s) + [ &% (s, )e()as’

with
(xvirr(s)ly) = € (re({ay. W, &1})

and

(XI&E (2], 8")y) = FiE20(x(s' — 9))e' =97 ({TR(IW, &), 7§ (W, &])})

K
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It follows that ~
G*(2) = G5 (2) + Gy (2)T%(2) Gy (2)

where ¥%(z) is the reducible self-energy.

The operator / + G(jf(z)fi(z) is of Volterra type Il and hence invertible. Setting
T (2) = TF(2)(1+ Gy (2T (2))

yields the irreducible self-energy and the Dyson equation

GE(2) = G5 (2) + Gy (2)T%(2)GF(2)

Letting Im(z) — O finally gives Theorem 2.
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Outlook

We provide a systematic mathematical approach to the non-equilibrium Green’s
function formalism for interacting transport in open systems. We follow a three-steps
bottom-up strategy only using real-time GFs (i.e., retarded, advanced and lesser):
Q@ We relate the transient current /j(t) to the fully interacting GF (¢;|G<(f, t)¢;).
@ Combining the available modular structure, i.e., the KMS conditions induced by
the thermal states of the reservoirs, with Duhamel identities we show that
(#j1G=(t, t)y;) obeys a Langreth-type identity whose rhs involves only the

interacting sample GF (¢;|G=<(t, t)¢;) and (¢;|G'(t, t)¢;). This immediately
implies the JMW formula

O We construct a retarded self-energy operator ¥ connecting (¢;|G'(t, t)¢;) to its
non-interacting counterpart through a Dyson equation. We then derive the

Keldysh equation relating (¢;|G<(t, t)¢;) to a lesser interaction self-energy > < for
which we provide an explicit expression.

To be worked out in the future:
@ Allowing initial correlations in the sample.
o Partition-free setting.
@ Feynman rules for the self-energies.
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Thank you !
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