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Why Green’s Functions in Many-Body Physics ?

Computationally simpler than many-body wave functions

In many circumstances better that quantum kinetic approaches (Boltzmann)

Well adapted to linear response calculations (Green-Kubo)...

... and perturbative techniques (diagrammatics, self-consistent schemes, ...)

Directly related to transport properties (currents, current-current correlations, ...)

... and fashionable!
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Historical Background

Physics
At equilibrium: Gell-Mann–Low (1951)

Out of equilibrium: Schwinger (1961), Kadanoff–Baym (1962), Keldysh (1964),
Fujita (1964),...

Applications to quantum transport: starting with Caroli et al. (1971-2)

...

culminating with Meir–Wingreen (1992) and Jauho–Meir–Wingreen (1994)

...

Mathematics
Steady state transport well understood in absence of interactions
(Landauer-Büttiker regime): Cornean–Jensen–Moldoveanu (2005),
Aschbacher–Jakšić–Pautrat–P and Nenciu (2007),
Cornean–Duclos–Nenciu-Purice (2008), ...
... and for weak interactions: Jakšić–P (2002), Fröhlich–Merkli–Ueltschi (2004),
Aschbacher–Jakšić–Pautrat–P (2006), Merkli–Mück–Sigal (2007)

Linear response theory: Jakšić–Ogata–P (2006)
Steady state limit of 2-points functions: Cornean–(P)–Moldoveanu (2011)
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(Landauer-Büttiker regime): Cornean–Jensen–Moldoveanu (2005),
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What is the mathematical status of NEGF’s formalism ?

At equilibrium
Green (Schwinger, Wightman) functions have been widely and successfully used
in constructive and axiomatic QFT: Haag-Kastler (1964), Osterwalder-Schrader
(1973), Fröhlich (1977),...,

Integral equations (Schwinger, Dyson) and analytic continuation (Euclidean
formalism) played a central role in these developments...

Out of equilibrium
Mathematical foundations of NEGF’s formalism still missing.
Keldysh path-ordering replaces usual time-ordering.

Easy to formulate rigorously (but I won’t do it).
Turns out to be a mere convenience tool to make non-equilibrium “look like” equilibrium.
Should be substituted by modular structure.
So called “analytic continuation” is needed to convert Keldysh ordered expressions to
“real-time” ones. Misleading to mathematicians since this has nothing to do with what
they call analytic continuation.

Integral equations again play a central role.

Self-energies encode the effects of interactions.
Dyson type equations are either assumed or derived by diagrammatic arguments.
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Setup

S
R2

Rk

RM

R1
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One particle setup

The Sample

With S a finite set: the sample Hamiltonian hS acts on the Hilbert space hS = `2(S)

The Reservoirs
The Hamiltonian of the j-the reservoir is hj acting on hj . Set

hR =
M⊕

j=1

hj , hR =
M⊕

j=1

hj

The Coupling

h = hS ⊕ hR, h = (hS ⊕ hR) + hT

with the Tunneling Hamiltonian

hT =
M∑

j=1

dj
(
|ψj 〉〈φj |+ |φj 〉〈ψj |

)
and unit vectors φj ∈ hS , ψj ∈ hj .
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WLOG: hj = L2(R, dνj (E)), hj = E , ψj = 1



Many-body setup

Second quantization =⇒ Quasi-free electronic gas
Hamiltonian H = dΓ(h) on the fermionic Fock space H = Γ−(h)

Creation/annihilation operators {a∗(f )/a(f )|f ∈ h} generate the algebra of
observables CAR(h)

Quasi-free dynamics τ t
H (A) = eitHA e−itH on CAR(h)

Initial state 〈 · 〉β,µ on CAR(h) with β = (βj ), µ = (µj ) and

〈 · 〉β,µ|CAR(hj ) is τHj -KMS at temperature β−1
j and chemical potential µj .

〈 · 〉β,µ|CAR(hS ) is gauge invariant (but not necessarily quasi-free)

Interactions
Two-body potential (w(x , y) = w(y , x), w(x , x) = 0, max w(x , y) = 1)

W =
1
2

∑
x,y∈S

w(x , y)a∗x ax a∗y ay

Interacting Hamiltonian K = H + ξW and dynamics τ t
K (A) = eitK A e−itK

Decoupled interacting Hamiltonian KD = H − HT = (HS + ξW ) + HR
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Green’s functions
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Motivation: non-interacting advanced/retarded Green’s functions

Inhomogeneous time-dependent Schrödinger equation in K = L2(R, ds)⊗ h

(Ωϕ)(s) = (i∂s − h)ϕ(s) = ψ(s)

has resolvent G0(z) = (Ω− z)−1 with integral kernel

(G0(z)ϕ)(s) = ±i
∫
θ(±(s′ − s))ei(s′−s)(h+z)ϕ(s′)ds′

for z ∈ C± = {±Im(z) > 0}.
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For ψ ∈ K∓loc the unique anti-causal/causal solution ϕ ∈ K∓loc is

ϕ(s) = (Ga/r
0 ψ)(s) =

∫
Ga/r

0 (s, s′)ψ(s′)ds′



Interacting Green’s function

advanced/retarded Green’s functions

〈f |Ga/r (s, s′)g〉 = ±iθ(±(s′ − s))
〈
{τ s′

K (a∗(g)), τ s
K (a(f ))}

〉
β,µ

lesser/greater Green’s functions

〈f |G<(s, s′)g〉 = +i
〈
τ s′

K (a∗(g))τ s
K (a(f ))

〉
β,µ

〈f |G>(s, s′)g〉 = −i
〈
τ s

K (a(f ))τ s′
K (a∗(g))

〉
β,µ

Keldysh Green’s function & spectral function

〈f |GK (s, s′)g〉 = 〈f |G<(s, s′) + G>(s, s′)|g〉 = +i
〈

[τ s′
K (a∗(g)), τ s

K (a(f ))]
〉
β,µ

〈f |A(s, s′)g〉 = i〈f |Gr (s, s′)− Ga(s, s′)|g〉

= i〈f |G>(s, s′)− G<(s, s′)|g〉 = i
〈
{τ s′

K (a∗(g)), τ s
K (a(f ))}

〉
β,µ
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The Langreth identity & the Jauho–Meir–Wingreen formula
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The Langreth identity

Decoupled reservoir Green’s functions are one-particle objects

Theorem 1

〈φj |G<(t , t ′)ψj 〉 = dj

∫ ∞
0

(
〈φj |Gr (t , s)|φj 〉〈ψj |G<D (s, t ′)ψj 〉

+〈φj |G<(t , s)|φj 〉〈ψj |Ga
D(s, t ′)ψj 〉

)
ds

Using the Duhamel formula

τ t
K (A) = τ t

KD
(A) +

∫ t

0
τ s

K (i[HT , τ
t−s
KD

(A)])ds

the interaction picture

τ t
K (A) = Γ∗t τ

t
KD

(A)Γt , i∂t Γt = τKD
(HT )Γt

the anti-commutation relations and the KMS property, the proof reduces to some
elementary algebra (no Keldysh contour integral nor “analytic continuation” needed).
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For f , g ∈ hj :

〈f |Ga/r
D (s, s′)g〉 = ±iθ(±(s − s′))

〈
{τ s′

KD
(a∗(g)), τ s

KD
(a(f ))}

〉
β,µ

= ±iθ(±(s − s′))〈f |ei(s′−s)hj g〉

〈f |G<D (s, s′)g〉 = +i
〈
τ s′

KD
(a∗(g))τ s

KD
(a(f ))

〉
β,µ

= +i〈f |ei(s′−s)hj (1 + eβj (hj−µj ))−1g〉

〈f |G>D (s, s′)g〉 = −i
〈
τ s

KD
(a(f ))τ s′

KD
(a∗(g))

〉
β,µ

= −i〈f |ei(s′−s)hj (1 + e−βj (hj−µj ))−1g〉
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The Jauho–Meir–Wingreen formula

Both the local carrier density in the sample and the current from the reservoirs are
easily expressed in terms of interacting lesser Green’s functions

ρ(x , t) =
〈
τ t

K (a∗x ax )
〉
β,µ

= Im〈x |G<(t , t)x〉

Ij (t) = idj

〈
τ t

K (a∗(ψj )a(φj )− a∗(φj )a(ψj ))
〉
β,µ

= 2dj Re〈φj |G<(t , t)ψj 〉

Theorem 1 then immediately yields

The JMW Transient Current Formula

Ij (t) = −2d2
j Im

∫ t

0
ds
∫

dνj (E)ei(t−s)E 〈φj |G<(t , s) + Gr (t , s)(1 + eβj (E−µj ))−1|φj 〉

The calculation of transient density and currents is thus reduced to that of the
interacting sample Green’s functions matrices

[〈x |Gr/<(s, s′)|y〉]x,y∈S
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Nonequilibrium self-energies & Dyson equations

, 16/24



Advanced/Retarded Dyson Equations

Theorem 2
There exists continuous maps

R+ × R+ 3 (s, s′) 7→ Σa/r (s, s′) ∈ L(hS)

such that the following Dyson equations hold

Ga/r (t , t ′) = Ga/r
0 (t , t ′) +

∫ ∞
0

ds
∫ ∞

0
ds′Ga/r

0 (t , s)Σa/r (s, s′)Ga/r (s′, t ′)

= Ga/r
0 (t , t ′) +

∫ ∞
0

dr
∫ ∞

0
dr ′Ga/r (t , s)Σa/r (s, s′)Ga/r

0 (s′, t ′)

Moreover the irreducible self-energy Σa/r (s, s′) is an entire analytic function of the
coupling constant ξ.

Observe that these Dyson equations can be restricted to the sample. So, for given
self-energy they give a finite dimensional integral equation for the sample interacting
r/a-Green’s functions. This equation can be solved by geometric series

G = G0 + G0ΣG =⇒ G =
∑
N≥0

G0(ΣG0)N = G0(I − ΣG0)−1
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Truncating the lesser Green’s function

Using the Duhamel formulas

τ t
K (A) = τ t

H (A) + ξ

∫ t

0
τ s

K

(
i[W , τ t−s

H (A)]
)

ds

τ t
H (A) = τ t

HD
(A) +

∫ t

0
τ s

HD

(
i[HT , τ

t−s
H (A)]

)
ds

one shows

Lemma
Assume that the restriction of the initial state to the sample is the vacuum state and
define a linear operator on hS by its matrix elements

S<xx′ (s, s′) = i
〈
T ∗x′ (s′)Tx (s)

〉
β,µ

where
Tx (s) = a(eishD hT δx ) + ξτ s

K (ax Vx ), Vx =
∑
y∈S

w(x , y)a∗y ay

Then, for φ, φ′ ∈ hS

〈φ|G<(t , t ′)φ′〉 =

∫ ∞
0

ds
∫ ∞

0
ds′〈φ|Gr

0(t , s)S<(s, s′)Ga
0(s′, t ′)φ′〉
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Lesser Dyson Equation

Combining the Lemma with Theorem 2 one gets

Theorem 3
Assume that the restriction of the initial state to the sample is the vacuum state. There
exists a continuous map

R+ × R+ 3 (s, s′) 7→ Σ<(s, s′) ∈ L(hS)

such that, for φ, φ′ ∈ hS ,

〈φ|G<(t , t ′)φ′〉 =

∫ ∞
0

ds
∫ ∞

0
ds′〈φ|Gr (t , s)Σ<(s, s′)Ga(s′, t ′)φ′〉

Moreover the irreducible self-energy Σ<(s, s′) is an entire analytic function of the
coupling constant ξ.
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Ideas for the proof of Theorem 2

For ±Imz > 0

〈ϕ|G±(z)ψ〉 =

∫
ds
∫
±(s′−s)>0

ds′ei(s′−s)z
〈
{τ s

K (a(ψ(s))), τ s′
K (a∗(ϕ(s′)))}

〉
β,µ

defines a bounded operator on K = L2(R, ds)⊗ h such that

G±(z)∗ = G∓(z̄), G±(z)K∓ ⊂ K∓

By explicit calculation and some integration by parts, one shows that

(Ω− z)G±(z)(Ω− z) = Ω + Σ̃±(z)− z

where Σ̃±(z) denotes the bounded operator on KS = L2(R, ds)⊗ hS given by

(Σ̃±(z)ϕ)(s) = vHF(s)ϕ(s) +

∫
S±(z|s, s′)ϕ(s′)ds′

with
〈x |vHF(s)|y〉 = ξ

〈
τ s

K ({ay , [W , a∗x ]})
〉
β,µ

and

〈x |S±(z|s, s′)|y〉 = ∓iξ2θ(±(s′ − s))ei(s′−s)z
〈
{τ s

K ([W , ay ]), τ s′
K ([W , a∗x ])}

〉
β,µ
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Ideas for the proof of Theorem 2

It follows that
G±(z) = G±0 (z) + G±0 (z)Σ̃±(z)G±0 (z)

where Σ̃±(z) is the reducible self-energy.

The operator I + G±0 (z)Σ̃±(z) is of Volterra type II and hence invertible. Setting

Σ±(z) = Σ̃±(z)(I + G±0 (z)Σ̃±(z))−1

yields the irreducible self-energy and the Dyson equation

G±(z) = G±0 (z) + G±0 (z)Σ±(z)G±(z)

Letting Im(z)→ 0 finally gives Theorem 2.
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Outlook
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Outlook

We provide a systematic mathematical approach to the non-equilibrium Green’s
function formalism for interacting transport in open systems. We follow a three-steps
bottom-up strategy only using real-time GFs (i.e., retarded, advanced and lesser):

1 We relate the transient current Ij (t) to the fully interacting GF 〈φj |G<(t , t)ψj 〉.
2 Combining the available modular structure, i.e., the KMS conditions induced by

the thermal states of the reservoirs, with Duhamel identities we show that
〈φj |G<(t , t)ψj 〉 obeys a Langreth-type identity whose rhs involves only the
interacting sample GF 〈φj |G<(t , t)φj 〉 and 〈φj |Gr (t , t)φj 〉. This immediately
implies the JMW formula

3 We construct a retarded self-energy operator Σr connecting 〈φj |Gr (t , t)φj 〉 to its
non-interacting counterpart through a Dyson equation. We then derive the
Keldysh equation relating 〈φj |G<(t , t)φj 〉 to a lesser interaction self-energy Σ< for
which we provide an explicit expression.

To be worked out in the future:

Allowing initial correlations in the sample.

Partition-free setting.

Feynman rules for the self-energies.
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Thank you !
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