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o Propagating states ~ “weakly vanishing” orbits ~ continuous spectrum of H

[Sinha '77],[...... ] He = Hae ® Hse
o Scattering states ~ ballistic motion ~ absolutely continuous spectrum of H

@ Sub-ballistic (anomalous) motion ~ singular continuous spectrum of H

[Sofer-Sigal ‘87, '94], [Derezinski '93], [....... | N-Body asymptotic completeness
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Folklore from the 80’ (solid state math-phys)

Electronic motion in a disordered solid

H=-A+V, homogeneous random potential V

[Anderson '58l], [Kunz-Soulliard '80], [Fréhlich-Spencer 83, [. ... .. ]
o Weak disorder/low energy ~ insulator ~ (dense) pure point spectrum
@ Strong disorder/high energy ~ conductor ~ absolutely continuous spectrum

Absolutely continuous spectrum is clearly related to transport )

Can we characterize ac spectrum by transport properties ?

mathematical concept physical quantity

ac spectrum conductance
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Transport in Non-Equilibrium Quantum Statistical Mechanics )
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Quantum Transport Theory vs Spectral Analysis ?

Transport in Non-Equilibrium Quantum Statistical Mechanics J

A sample S (open system) driven by reservoirs ...

...reaches a current carrying steady state

Spectral Properties of the (bulk) sample Hamiltonian hs

I

Large sample limit of the steady current
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Program

spectral triple: (H, H, V)

1

Jacobi matrix model (¢2(N), h, 51)
b1 ai 0

ay b a

h= h(a,b) =
0 a bs

8/28



Program

spectral triple: (H, H, V) J
1

Jacobi matrix model (¢2(N), h, 51) J
1

Transport properties of large truncated Jacobi matrix hst) =1,h1; on 22([1..L]) J

At (R

8/28



Program

spectral triple: (H, H, V) J
1

Jacobi matrix model (¢2(N), h, 51) J
1

Transport properties of large truncated Jacobi matrix hst) =1,h1; on 22([1..L]) J

At (R

Physics

@ Tranport properties and scaling theory of disordered 1D samples: Thouless,
Anderson, Lee, Landauer,. . . (~1970-1980)

o Scattering theory of steady state currents: Landauer, Bittiker, Fisher, Lee,
Imry,. .. (~1970-1990)
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Program

spectral triple: (H, H, V) J
1l

Jacobi matrix model (¢2(N), h, 51) J
1

Transport properties of large truncated Jacobi matrix hst) =1,h1; on 22([1..L]) J

At (R

Mathematics

@ Spectral theory of 1D Jacobi matrices ... (1980-) [B. Simon’s book 2011]

o Rigorous Landauer-Bttiker formalism: Aschbacher-Jaksi¢-Pautrat-P,
Nenciu, Ben-Saad-P (2005-2010)
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The model — One particle setup

The Sample

Bulk Hamiltonian: Jacobi matrix h = h(a, b) on ¢2(N) (bn # 0)
Sample Hamiltonian: hfSL) is the restriction of h to HSSL) = (2([1..1])
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The model — One particle setup

The Sample

Bulk Hamiltonian: Jacobi matrix h = h(a, b) on ¢2(N) (b, # 0)
Sample Hamiltonian: hfSL) is the restriction of h to HSSL) = (2([1..1])

The Reservoirs
WLOG: H;,, = L3(R,dvy/(E)), hyyr = E, ¢y =1
Y =1{E| d"f{% > 0} is the essential support of spec,.(h;,,)

The Coupling

HO =menLaen, n=nenPen, O =h"+ch
tunneling strength < # 0, tunneling Hamiltonian

hr = 1)1+ 1Dl 4 1) (L] + D) (o
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The model — Many body setup

Quasi-free electronic gas
@ Hamiltonian H(1) = dr(h(D) on the fermionic Fock space F = I (H())
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The model — Many body setup

Quasi-free electronic gas

@ Hamiltonian H(D) = dr(h(D)) on the fermionic Fock space F = I_(#(1)

@ Creation/annihilation operators {a*(f)/a(f)|f € H(D)} generate the algebra of
observables CAR(H (1)

@ Dynamics TI(L)(A) etH® ae=ithY on CAR(H (D)

o Initial state wy,, ., on CAR(H(D) s.t. Wyprlear(ry ) 18 KMS at zero temperature
and chemical potential p1;/,. We assume pr > py

@ Charge current J = —i[H(D, N)] out of the left reservoir

o Steady state current

m L7 0)
r = Jim 3 [ (D

T—oo

= lim TD — lim [Wu/ ur (N)) — wy, m(ﬂ (NI))]

t—o0
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Bittiker-Landauer vs Thouless conductance }
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The Biittiker-Landauer formula

The steady state current is given by

1 1224
(Dl = / TO(E)E

2m Sy,

where

. — d,/ yac d ac
TO(E) = |Sp(E)P = 4n®*|(1](hD) — E - i0) 1\L>\2 / £ (B)~ V' (E)

is the sample’s transmittance which satisfies the unitarity bound
0< TH(E) <1

and vanishes for E ¢ ¥; N X, («+-open scattering channels)
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The Biittiker-Landauer formula

The steady state current is given by

‘| Hr
(Dl = / TO(E)E

2m Sy,

where

. — d,/ yac d ac
TO(E) = |Sp(E)P = 4n®*|(1](hD) — E - i0) 1\L>\2 / £ (B)~ V' (E)

is the sample’s transmittance which satisfies the unitarity bound
0<7B(E) <1
and vanishes for E ¢ ¥; N X, («+-open scattering channels)
The proof involves the scattering theory of the pair (héL), h(D)
@ Aschbacher, Jaksi¢, Pautrat, P.: JMP 48, 032101 (2007).

@ Nenciu: JMP 48, 033302 (2007)
@ Ben Saad, P: JMP 55, 075202 (2014)
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The Thouless conductance

[Thouless 1977]

Consider an electron from the left reservoir on its journey towards the right reservoir.
Let 6t be the typical time such an electron spend in the sample. The time-energy
uncertainty relation §t6E 2 2w sets a limit on the spread in energy of its wave function:

the Thouless energy

27
Erm = 6E > —.
Th ~ oSt

Assuming a diffusive motion, we further have
L% = Dét
and Einstein’s relation links the diffusion constant D to the conductivity o

12 Em,
—Dop= —p< 210
TTEeT St 2
where o is the density of states of the sample. Denoting AE the typical level spacing of
the sample, we have oLAE ~ 1. Thus, for the sample’s conductance g = o /L we
derive

1 Em

< = —
g X 9m o7 AE

ot is the Thouless conductance
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The Thouless conductance

A tentative mathematical definition [Last 1994]

o For the sample’s conductance to achieve its maximal value g, the reservoir and
its coupling should provide an optimal feeding of the sample with electrons.

@ The coupling of the reservoirs to the sample should be reflectionless.
@ This is achieved in a periodic structure
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The Thouless conductance

A tentative mathematical definition [Last 1994]

o For the sample’s conductance to achieve its maximal value g, the reservoir and
its coupling should provide an optimal feeding of the sample with electrons.

@ The coupling of the reservoirs to the sample should be reflectionless.
@ This is achieved in a periodic structure

Map the bulk Jacobi matrix h = h(a, b) to a periodic Jacobi matrix S L on 2(Z)

crystal

------ T S I S S
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crystal
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E
~—0E,

The energy uncertainty within a single band B; is of the order of the bandwidth
dE; = |B;|. A rough estimate of this uncertainty within / is

E— ZB/CI 1Bl
g
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I

AE =
2
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The Thouless conductance

E

Consider an energy window / =], ur[ containing several spectral bands B; of hgfy)sml.
B; ~~AE; 1
~——JE;

The energy uncertainty within a single band B; is of the order of the bandwidth
dE; = |B;|. A rough estimate of this uncertainty within / is

E— ZB/CI 1Bl
g
The mean level spacing within / is
_
2

The Thouless conductance is roughly the normalized Lebesgue measure of
L .
spec(h((:ry)sml) in/

AE

L
_ 1 E 1 |lﬁspec(h£ry)sml)|
9 = 5-AE " 2n 1]
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Crystaline reservoirs

Contrary to the Thouless conductance which is an intrinsic property of the sample, the
Buttiker-Landauer conductance
1 Hr

gL (s pors L) TO(E)E

- 2n(pr — ) Sy,
also depends on the reservoirs and its coupling to the sample.
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Crystaline reservoirs

Contrary to the Thouless conductance which is an intrinsic property of the sample, the
Buttiker-Landauer conductance
1 Hr

gL (s pors L) TO(E)E

2w — ) Jy,

also depends on the reservoirs and its coupling to the sample. To investigate this
dependence, consider repeating the sample N-times

Theorem 1 [Bruneau, Jaksi¢, Last, P 2014]

Nllm gBL(/‘LI» Hr, L7 N) = gOO('U’I’ Hr, L)
— 00

(L)
1 [spec(Mypyga )1t el
sup oo, pir, L) = grn(lpu, prl, L) = o r]ly:;alﬂ i
s Hr

environment
where the supremum is taken over all realizations of the reservoirs/couplings.

(1)

17/28



Crystaline reservoirs

Contrary to the Thouless conductance which is an intrinsic property of the sample, the
Buttiker-Landauer conductance
1 Hr

gL (s pors L) TO(E)E

2w — ) Sy,

also depends on the reservoirs and its coupling to the sample. To investigate this
dependence, consider repeating the sample N-times

[Bruneau, Jaksic, Last, P 2014]
Nli—>moo gBL(/‘Lh Hr,s L, N) = 09 (lu’lﬂ Hr, L)

(L)
1 Ispec(gysa) I ier, porl]
sup Goo (”I’ Hr L) = gTh(]uh :U‘l’[v L) = a_ e
environment 2r [1er, perl|
where the supremum is taken over all realizations of the reservoirs/couplings.
Moreover, the rhs of (1) is the Buttiker-Landauer conductance of the crystaline model

(1)

R] Rv‘
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Physical vs mathematical characterization of conduction )
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Conduction & spectral properties

Physical characterization

The Landauer-Buttiker formula naturally leads to the set E.onduction Of €NErgies E for
which

T L—oo

1
.. . _ _ (L
IanlglfélllfTogLB(E SE,E+6E,L) 5 liminf T\5(E) >0
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Conduction & spectral properties

Physical characterization
The Landauer-Buttiker formula naturally leads to the set E.onduction Of €NErgies E for
which |
L . _ LTI (L)
IanlglfélllfTogLB(E SE,E+6E,L) 5 liminf T\5(E) >0

T L—oo

Mathematical characterization

According to the folklore, let X, x denote the essential support of the absolutely
continuous spectrum of h (i.e., of the original Hamiltonian H)

Conjecture [Bruneau,Jaksi¢,P 2013]

Econduction = Lbulk M XNk,

Remark. The NX; N X, is trivially needed since T(D(E) = 0for E ¢ £, N .
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The Schrodinger conjecture

In terms of the Transfer matrix of h

T(E,L) = (E—abLL)/aL —10/6L]...[(E—al:1)/a1 —10/a1

we have

Econduction = {E| SliP ”T(E» L)” < 00} nNX N, (2)
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The Schrodinger conjecture

In terms of the Transfer matrix of h

T(E,L) = [ (E*:LL)/aL *1({& }[ (5*21)/31 *10/31 ]

we have
Theorem 2 [Bruneau,Jaksi¢,P 2013]

Econduction = {E| Slip ”T(E’ L)” < OO} Ny, N, (2)

[Gilbert-Pearson '87] proved that the rhs of (2) is included in X, x. Thus, our conjecture
reduces to the reverse inclusion Xyx N X; N X, C Econduction Which is equivalent to the
celebrated (see the review [Maslov-Molchanov-Gordon, Russian J. Math. Phys. '93])
Schradinger Conjecture

Touk = {E| SliP”T(E, DIl < oo}
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The Schrodinger conjecture

In terms of the Transfer matrix of h

T(E,L)= { (Ei:LL)/aL 710/3L }[ (E*£1)/31 *10/31 ]

we have
Theorem 2 [Bruneau,Jaksi¢,P 2013]

Econduction = {E| Slzp ” T(E’ L)” < OO} Ny, N, (2)

[Gilbert-Pearson '87] proved that the rhs of (2) is included in X, x. Thus, our conjecture
reduces to the reverse inclusion Xyx N X; N X, C Econduction Which is equivalent to the
celebrated (see the review [Maslov-Molchanov-Gordon, Russian J. Math. Phys. '93])
Schradinger Conjecture

Touk = {E| SliP”T(E, DIl < oo}

which was believed to be true until Artur Avila succeeded in constructing an ergodic
Schrédinger operator h which (with probability 1) has unbounded generalized
eigenfunctions for a subset of positive Lebesgue measure of Ly, [JAMS 28, 579-616
(2015)]
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AC spectrum and conductance, finally

The main result of the our last paper is the following complete dynamical
characterization of the ac-spectrum of h.

Theorem 3 [Bruneau,Jaksi¢,Last,P 2015]

Assume that |u, ur[C X; N X,. Then the following statements are equivalent:

o Specac(h)m]:uh }Lr[: 0
(2] Jim gs(us, pry L) = 0
—> 00

Q lim gm(ps,pr, L) =0
L—oo
Moreover, if spec,. (h)N]wy, pr[# 0, then

liminf g, g(xy, pr, L) > 0, lim inf gzs(pers por, L) > 0
L—oo L—oo
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AC spectrum and conductance, finally

The main result of the our last paper is the following complete dynamical
characterization of the ac-spectrum of h.

[Bruneau,Jaksi¢,Last,P 2015]

Assume that |u, ur[C X; N X,. Then the following statements are equivalent:
o Specac(h)m]/‘th }Lr[: @
Q lim gip(u,pr L) =0
L—oo

Q lim gra(p, pr, L) =0
L—oo
Moreover, if spec,.(h)N]wy, pr[# 0, then

liminf g, g(xy, pr, L) > 0, lim inf gzs(pers por, L) > 0
L—oo L—oo

Remarks.

o @ < @ was proved in Last’s PhD thesis in the ergodic case. Gestezsy-Simon
extended Last’s result to deterministic full line operators. Their argument does not
work for the half line operators.

@ Only @ = @ requires the assumption ]y, ur[C ¥, N ¥, which ensures that the
interval |y, pr[ is entirely open to scattering.
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Ideas of the proof

Main strategy: show that @, @ and @ are equivalent to

Hr
o) Iim/ IT(E,L)|~2dE = 0
L—oo w

22/28



Ideas of the proof

Main strategy: show that @, @ and @ are equivalent to

Hr
Q Iim/ | T(E,L)||2dE =0
L—oo w

o The key lemma @ = @ is a simple consequence of a result of Carmona,
Krutikov-Remling and Simon: If u = (1,0)7, then

Jim 1 / f(E)IT(E, Lyu| 2dE = (1]f(h)[1)

for f € Co(R).
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Ideas of the proof

Main strategy: show that @, @ and @ are equivalent to

Hr
o) Iim/ IT(E,L)|~2dE = 0
L—oo w

o The key lemma @ = @ is a simple consequence of a result of Carmona,
Krutikov-Remling and Simon: If u = (1,0)7, then

Jim 1 [ HOITE Dul~2aE = i)

for f € Co(R).
o The reverse implication @ = @ follows from the Simon-Last result:

liminf || T(E, L)|| < oo
L—oo

for a.e. E € Ypux

22/28



Ideas of the proof

Main strategy: show that @, @ and @ are equivalent to

Hr
Q Iim/ | T(E, L) 2dE =0
L—oo m

o The equivalence @ < @ follows from Theorem 2.
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Ideas of the proof

Main strategy: show that @, @ and @ are equivalent to

Hr
Q Iim/ | T(E, L) 2dE =0
L—oo w

o The equivalence @ < @ follows from Theorem 2.
@ The proof of @ = @ is essentially Last’s purely deterministic proof of @ = @
o Last’s proof of @ = @ relies on Kotani theory which yields the estimate

. L
im sup Ispeca (Al k)T iar, e[l < Ispec,e (M), or]
— 00

with probability 1. Combining Last’s deterministic estimate of || T(E, L)|| for
Ec spec(h((:rLy)sml) with a result of Deift-Simon on the rotation number of h(%)

crystal’ we
derive the estimate

. L
lim sup [spec,. (A )N Tiar, e[| < Clspec,o (M), (|

L—oo

which yields @ = @

23/28



Outlook }
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Many-body localization

Suppose {v(x)}xecz, are "nice” i.i.d. random variables. Then h has pure point
spectrum and Theorem 3 implies

1 T
lim sup lim sup T /0 Wp,/,/l.r(T[(L)(J))dt =0

L—soo T—oo
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1 T
lim sup lim sup T /0 Wp,/,/l.r(T[(L)(J))dt =0

L—soo T—oo

Consider adding short-range many-body interactions to the second quantized
Hamiltonian

HO =rh)y+w, W= > w(x-y)aaaax
x,y€[0..1]
The dynamics on CAR(#H(D) is still well defined
D) = eitH) po—itHH)
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so is the current observable
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Many-body localization

Suppose {v(x)}xecz, are "nice” i.i.d. random variables. Then h has pure point
spectrum and Theorem 3 implies

1 T
lim sup lim sup T /0 Wp,/,/l.r(T[(L)(J))dt =0

L—soo T—oo

Consider adding short-range many-body interactions to the second quantized
Hamiltonian

HO =rh)y+w, W= > w(x-y)aaaax
x,y€[0..1]
The dynamics on CAR(#H(D) is still well defined
D) = eitH) po—itHH)

Tt

so is the current observable
J= _][H(L)7 N/]

Does Anderson localization survive weak many-body interactions ? How to
characterize it ?

25/28



Many-body localization

We can still characterize localization/conduction on ]y, pr[ by
. , T ) _
I|msup||msup7 Wyp,pr (17 (J))dE =0
0

L—oco T—oo

17 )
liminf lim inf ?/0 Wyp,pr (177 (J))dE >0

L—oo T—oo
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Anderson impurity model

The simplest model in this category (repulsive interaction between electrons at x = 1
and x = 2)
W = Uaja;aay, (U>0)
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Many-body localization

We can still characterize localization/conduction on ]y, pr[ by

1 T
Iimsuplimsup? A wM’H,(Tt(L)(J))dt:O

L—oco T—oo

17 0)
liminf lim inf ?/0 Wyp,pr (177 (J))dE >0

L—oo T—oo

Anderson impurity model

The simplest model in this category (repulsive interaction between electrons at x = 1
and x = 2)
W = Uaja;aay, (U>0)

Even this simplest model is completely open!
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Thank you !



	Introduction
	Quasi-Free Quantum Transport
	Büttiker-Landauer vs Thouless conductance
	Physical vs mathematical characterization of conduction
	Outlook

