Fock and non-Fock stateson CAR-algebras
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In the formalism ofecondjuantization a system of fermions is describedtgationrandannihilationoperators
a*(f), a(f) on the anti-symmetriEockspacd’, () over the one-particle Hilbert spageFor systems confined in
a finite volume, this Hilbert space description is sufficiand states of finite positive density can be represented by
densitymatrices inl", (). The situation changes when taking the thermodynamic (iefilume) limit. There is
no density matrix in Fock space describing a positive dgissitte of an infinitely extended system of fermions. For
such systems a more sophisticated description involviagthalgebraCAR(h) is needed (see [Thé*-algebra
approach]).

1 Gaugeinvariant stateson CAR(b)

Global U (1)-gaugesymmetry is a fundamental property of quantum mechanissmplementation ofCAR(h)
is given by the gauge grodp > ¢ — 9%, the group oBogoliubovautomorphisms defined by

99(a*(f)) = a*(e¥f) = e¥a*(f), 09(a(f)) = a(e¥f) = e ¥a(f).

As a Banach spac€AR(h) has a direct sum decomposition into charge sectors

CAR(h) = @ CAR,(h),

neZ

whereCAR,, () is the closed linear span of monomials of the form

a*(f1)---a*(f;)algr) - algr),
with j — k = n. In terms of the gauge-group one has
CAR,(h) = {A € CAR(h) |99 (A) = P A}.

If A€ CAR,(h) andB € CAR,,(h), thenAB € CAR,,;n(h), A* € CAR_,(h). In particular, the zero charge
sectorCARy(h) is aC*-subalgebra generated hyand elements of the formi*( f)a(g). Physical observables of
a system of fermions are gauge invariant and hence eleme6tsR ().

A statew on CAR(h) is gauge-invariant itv o 9%¢ = w for all ¢ € R. A statewy on CARq(h) has a unique
extension to a gauge-invariant staten CAR(), given by

w(®nAn) = wo(Ao).

Thus, a gauge-invariant state 6iAR(h) is completely determined by its restriction to the gaugesiiant sub-
algebraCARg(h). When dealing with fermionic systems it is often convenienwork on the full algebr& AR(h)
and to restrict the states to be gauge-invariant.



2 Characteristic functions

Denote byi/ the group of unitaries on § such thatu — I is finite rank. For eachy € U/ there exist finite rank
self-adjoint operators such that

k=Y nifi(fil), u=e" @
Jj=1
Moreover, the unitary ) .
Ulu) = e 2 " )alfs) e CAR(p),

only depends om, not on the particular choice of the representation (1). Areki-Wyss characteristic function
of a gauge-invariant stateon CAR(h) is defined as

E: U — C
u — wU(uw).

It satisfies

1. Foranyuy,...,uy € Y andzy,...,zy € C,

N

Z E(ujug)zjzi > 0.
k=1

2. Foranyu,v €U, f e pand) € R
E(ueV1)fy) — B(uv)
eiMIfIZ — 1 ’

is independent ok.

Reciprocally, any functio® : ¢/ — C satisfying the above two conditions is the characteristicfion of unique
gauge-invariant state on CAR(h) (see [AW]).

3 Vacuum state and Fock representation

The vacuum stateac(-) on CAR(h) describes the system in absence of any fermiode|fi € I} denotes an
arbitrary orthonormal basis ¢f thenn; = a*(e;)a(e;) is the number of fermions in state and we must have
vac(]],c;n:) = 0 for any finiteJ C I (note that[n;,n;] = 0). It immediately follows that the characteristic
function of the vacuum state Bac(u) = 1.

The GNS representation associated to the vacuum statefothaepresentatiofi{r, 7r, Qr) WhereHp =
T.(h) is the fermionic Fock space overnr(a(f)) = ar(f) is the annihilation operator dn,(h) andQ) is the
Fock vacuum vector. Faof;, g; € h one has

vac(a(gy) -+~ a(gm)a™(fn)---a*(f1)) = (a5 (gm) - - aF(91)Qr|ak(fr) - - aF(f1)QF) = Onm det {(gl|f])} .
Special features of the Fock representation are:

(i) #=(CAR(h)) is irreducible, i.e., any bounded operator By(h) commuting with allaif(f) is a multiple
of the identity. Equivalently, the enveloping von Neumaigeararr(CAR(h))” is the C*-algebra of all
bounded operators dn, (h).



(i) The second quantizatioR(U) of a unitary operatot/ on f provides a unitary implementation of the associ-
ated Bogoliubov automorphism(a(f)) = a(U f),

mr(v(a(f))) = T(U)mr(a(f)T(U)*.

In particular, the gauge grou@y is implemented by a strongly continuous unitary group whgeseerator
N = dI'(I) is the number operator.

A Fock state onCAR(h) is a statev which is normal with respect to the vacuum state. Such a state is
therefore defined by (A) = tr(prr(A)) wherep is a density matrix ofi, (h). The GNS representation of a Fock
statew is a direct sum of Fock representations, i.e., there existbert spacelC such thatH,, = Hr ® K and
7.(A4) = 7p(A) ® I. Typical examples of Fock states are finite volume, granmtboiral Gibbs ensembles

e B(HA—uNA)

P (e BHA—uN)Y’

for Fermi gases with stable interactions (see [BR2]). Thetymamic limits of such states yield non-Fock states
with finite density. It is usually impossible to describe koifly the GNS representations of these infinite volume
KMS states. Notable exceptions are the ideal Fermi gases wdachtb theAraki-Wyss representations.

Since there exists a self-adjoint (and hence densely défmedber operatoN = dI'(I) on the Fock space
‘H r, Fock states describe systems with a finite number of fersni@mumber operator can be tentatively defined in
the GNS representation of any statas follows. For any finite/ C I denote by ; the quadratic form associated
to the operatod _,_ ; m,(n;). For¥ € H,, setn, (V) = sup;n;(¥). It can be shown that,, is a closed,
non-negative quadratic form on the domaiy = {¥ € H,, | n.(¥) < oo}. If this domain is dense them, is the
guadratic form of a self-adjoint number operalgy and the state is a Fock state (see [BR2] for details).

4 Anti-Fock representation

A statefull(-) describing a completely filled Fermi sea must satisfy, for@athonormal basige; | i € I} and any
finite J C I, full(J ], ;(1 — n;)) = 0. It can be obtained using the particle-hole duality. Detgte an arbitrary

complex conjugation oh and define the-automorphism by a(a(f)) = a*(f). Sincel — n; = a(e;)a*(e;) =
a(a*(é;)a(e;)) we can sefull = vac o «. It follows that

vac(a(f1) - a(fn)a™(Gm) - a*(g1)) = dnm det {(gl|f7)} .

Foru € U one has
(U (u)) = det(u)U (),

hence the characteristic function of the filled Fermi sef&ig; (u) = det(u). The corresponding GNS representa-
tion is the anti-Fock representatiOi g, mar, Q) Whererap = 7r o a.

If b is finite dimensional then the statesc andfull are mutually normal and the Fock and anti-Fock repre-
sentations are equivalent. By fixing an orthonormal bgsis. .., e, } and settingz; = [, ; a(e;) the unitary
operator defined by A%Qp = A}, ,Qp intertwinesr andm 4. If b is infinite dimensional these two represen-
tations are inequivalent arfdll is not a Fock state.

5 Jordan-Wigner representation

The equivalence of the Fock and anti-Fock representatib@A® algebras over finite dimensional spaces is a
consequence of a more general fact about such algebras whidiscuss briefly in this last section. We refer the
reader to [D] for a more detailed discussion.



If b is finite dimensional thelwAR(h) is x-isomorphic to the full matrix algebralat(24™9). An explicit
representation is provided by the Jordan-Wigner transftion described below. Since it maps fermions into
guantum spins this transformation is also quite useful inyrapplications to statistical mechanics.

Let{ey,...,e,} be an orthonormal basis 6fand denote by ("), (), ¢ the Pauli matrices. On the-fold
tensor product = C? ® --- ® C2 ~ C?" define

O-I(CO‘):[@...®U(04)...(§§[7

whereo(®) acts on thek-th copy ofC2. Clearly, this operators generate the full matrix alge®(a() ~ Mat(2").
One easily checks that the operators

ar =0 o (o) — o) /2,

satisfy[ar, a;]+ = 0 and|a, af]+ = 0. The Jordan-Wigner representation@AiR (h) is defined by

o (Z ) S s

k k
The inversion formulas

0,(63) = 2aga, — I, a,(cl) = 053) cee a,igi)l(ak + aj), U,(f) = ia%g) . -o,(i)l(ak —ay),
show thatCAR(b) is isomorphic taVlat(2™). The Jordan—Wigner representation plays for fermionsaheesrole
as theSchrddingerepresentationf the CCR: If dim b < oo then any irreducible representation ©AR(h) is
equivalent to the Jordan—Wigner representation.
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