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In the formalism ofsecondquantization a system of fermions is described bycreationandannihilationoperators
a∗(f), a(f) on the anti-symmetricFockspaceΓa(h) over the one-particle Hilbert spaceh. For systems confined in
a finite volume, this Hilbert space description is sufficientand states of finite positive density can be represented by
densitymatrices inΓa(h). The situation changes when taking the thermodynamic (infinite volume) limit. There is
no density matrix in Fock space describing a positive density state of an infinitely extended system of fermions. For
such systems a more sophisticated description involving the C∗-algebraCAR(h) is needed (see [TheC∗-algebra
approach]).

1 Gauge invariant states on CAR(h)

GlobalU(1)-gaugesymmetry is a fundamental property of quantum mechanics. Its implementation onCAR(h)
is given by the gauge groupR ∋ ϕ 7→ ϑϕ, the group ofBogoliubovautomorphisms defined by

ϑϕ(a∗(f)) = a∗(eiϕf) = eiϕa∗(f), ϑϕ(a(f)) = a(eiϕf) = e−iϕa(f).

As a Banach space,CAR(h) has a direct sum decomposition into charge sectors

CAR(h) =
⊕

n∈Z

CARn(h),

whereCARn(h) is the closed linear span of monomials of the form

a∗(f1) · · · a
∗(fj)a(gk) · · · a(g1),

with j − k = n. In terms of the gauge-group one has

CARn(h) = {A ∈ CAR(h) |ϑϕ(A) = einϕA}.

If A ∈ CARn(h) andB ∈ CARm(h), thenAB ∈ CARn+m(h), A∗ ∈ CAR−n(h). In particular, the zero charge
sectorCAR0(h) is aC∗-subalgebra generated byI and elements of the forma∗(f)a(g). Physical observables of
a system of fermions are gauge invariant and hence elements of CAR0(h).

A stateω on CAR(h) is gauge-invariant ifω ◦ ϑϕ = ω for all ϕ ∈ R. A stateω0 on CAR0(h) has a unique
extension to a gauge-invariant stateω onCAR(h), given by

ω(⊕nAn) = ω0(A0).

Thus, a gauge-invariant state onCAR(h) is completely determined by its restriction to the gauge-invariant sub-
algebraCAR0(h). When dealing with fermionic systems it is often convenient to work on the full algebraCAR(h)
and to restrict the states to be gauge-invariant.
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2 Characteristic functions

Denote byU the group of unitariesu on h such thatu − I is finite rank. For eachu ∈ U there exist finite rank
self-adjoint operatorsk such that

k =
n
∑

j=1

κjfj(fj | · ), u = eik. (1)

Moreover, the unitary
U(u) = ei

P

j
κja∗(fj)a(fj) ∈ CAR(h),

only depends onu, not on the particular choice of the representation (1). TheAraki-Wyss characteristic function
of a gauge-invariant stateω onCAR(h) is defined as

E : U → C

u 7→ ω(U(u)).

It satisfies

1. For anyu1, . . . , uN ∈ U andz1, . . . , zN ∈ C,

N
∑

j,k=1

E(u∗
juk)z̄jzk ≥ 0.

2. For anyu, v ∈ U , f ∈ h andλ ∈ R

E(ueiλ(f | · )fv) − E(uv)

eiλ‖f‖2 − 1
,

is independent ofλ.

Reciprocally, any functionE : U → C satisfying the above two conditions is the characteristic function of unique
gauge-invariant stateω onCAR(h) (see [AW]).

3 Vacuum state and Fock representation

The vacuum statevac(·) on CAR(h) describes the system in absence of any fermion. If{ei | i ∈ I} denotes an
arbitrary orthonormal basis ofh thenni = a∗(ei)a(ei) is the number of fermions in stateei and we must have
vac(

∏

i∈J ni) = 0 for any finiteJ ⊂ I (note that[ni, nj ] = 0). It immediately follows that the characteristic
function of the vacuum state isEvac(u) = 1.

The GNS representation associated to the vacuum state is theFock representation(HF , πF ,ΩF ) whereHF =
Γa(h) is the fermionic Fock space overh, πF (a(f)) = aF (f) is the annihilation operator onΓa(h) andΩF is the
Fock vacuum vector. Forfi, gj ∈ h one has

vac(a(g1) · · · a(gm)a∗(fn) · · · a∗(f1)) = (a∗
F (gm) · · · a∗

F (g1)ΩF |a
∗
F (fn) · · · a∗

F (f1)ΩF ) = δnm det {(gi|fj)} .

Special features of the Fock representation are:

(i) πF (CAR(h)) is irreducible, i.e., any bounded operator onΓa(h) commuting with alla#
F (f) is a multiple

of the identity. Equivalently, the enveloping von Neumann algebraπF (CAR(h))′′ is theC∗-algebra of all
bounded operators onΓa(h).
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(ii) The second quantizationΓ(U) of a unitary operatorU onh provides a unitary implementation of the associ-
ated Bogoliubov automorphismγ(a(f)) = a(Uf),

πF (γ(a(f))) = Γ(U)πF (a(f))Γ(U)∗.

In particular, the gauge groupϑt is implemented by a strongly continuous unitary group whosegenerator
N = dΓ(I) is the number operator.

A Fock state onCAR(h) is a stateω which is normal with respect to the vacuum statevac. Such a state is
therefore defined byω(A) = tr(ρπF (A)) whereρ is a density matrix onΓa(h). The GNS representation of a Fock
stateω is a direct sum of Fock representations, i.e., there exists aHilbert spaceK such thatHω = HF ⊗ K and
πω(A) = πF (A) ⊗ I. Typical examples of Fock states are finite volume, grand-canonical Gibbs ensembles

ρ =
e−β(HΛ−µNΛ)

tr(e−β(HΛ−µNΛ))
,

for Fermi gases with stable interactions (see [BR2]). Thermodynamic limits of such states yield non-Fock states
with finite density. It is usually impossible to describe explicitly the GNS representations of these infinite volume
KMS states. Notable exceptions are the ideal Fermi gases which lead to theAraki-Wyss representations.

Since there exists a self-adjoint (and hence densely defined) number operatorN = dΓ(I) on the Fock space
HF , Fock states describe systems with a finite number of fermions. A number operator can be tentatively defined in
the GNS representation of any stateω as follows. For any finiteJ ⊂ I denote bynJ the quadratic form associated
to the operator

∑

i∈J πω(ni). For Ψ ∈ Hω setnω(Ψ) = supJ nJ (Ψ). It can be shown thatnω is a closed,
non-negative quadratic form on the domainDω = {Ψ ∈ Hω |nπ(Ψ) < ∞}. If this domain is dense thennω is the
quadratic form of a self-adjoint number operatorNω and the stateω is a Fock state (see [BR2] for details).

4 Anti-Fock representation

A statefull(·) describing a completely filled Fermi sea must satisfy, for any orthonormal basis{ei | i ∈ I} and any
finite J ⊂ I, full(

∏

i∈J(1 − ni)) = 0. It can be obtained using the particle-hole duality. Denoteby · an arbitrary
complex conjugation onh and define the∗-automorphismα by α(a(f)) = a∗(f̄). Since1 − ni = a(ei)a

∗(ei) =
α(a∗(ēi)a(ēi)) we can setfull = vac ◦ α. It follows that

vac(a(f̄1) · · · a(f̄n)a∗(ḡm) · · · a∗(ḡ1)) = δnm det {(gi|fj)} .

Foru ∈ U one has
α(U(u)) = det(u)U(ū),

hence the characteristic function of the filled Fermi sea isEfull(u) = det(u). The corresponding GNS representa-
tion is the anti-Fock representation(HF , πAF ,ΩF ) whereπAF = πF ◦ α.

If h is finite dimensional then the statesvac andfull are mutually normal and the Fock and anti-Fock repre-
sentations are equivalent. By fixing an orthonormal basis{e1, . . . , en} and settingaJ =

∏

i∈J a(ei) the unitary
operator defined byUA∗

JΩF = A∗
I\JΩF intertwinesπF andπAF . If h is infinite dimensional these two represen-

tations are inequivalent andfull is not a Fock state.

5 Jordan-Wigner representation

The equivalence of the Fock and anti-Fock representations of CAR algebras over finite dimensional spaces is a
consequence of a more general fact about such algebras whichwe discuss briefly in this last section. We refer the
reader to [D] for a more detailed discussion.
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If h is finite dimensional thenCAR(h) is ∗-isomorphic to the full matrix algebraMat(2dim h). An explicit
representation is provided by the Jordan-Wigner transformation described below. Since it maps fermions into
quantum spins this transformation is also quite useful in many applications to statistical mechanics.

Let {e1, . . . , en} be an orthonormal basis ofh and denote byσ(1), σ(2), σ(3) the Pauli matrices. On then-fold
tensor productH = C

2 ⊗ · · · ⊗ C
2 ≃ C

2n

define

σ
(α)
k = I ⊗ · · · ⊗ σ(α) · · · ⊗ I,

whereσ(α) acts on thek-th copy ofC2. Clearly, this operators generate the full matrix algebraB(H) ≃ Mat(2n).
One easily checks that the operators

ak = σ
(3)
1 · · ·σ

(3)
k−1(σ

(1)
k − iσ

(2)
k )/2,

satisfy[ak, al]+ = 0 and[ak, a∗
l ]+ = δk,l. The Jordan-Wigner representation ofCAR(h) is defined by

aJW

(

∑

k

zkek

)

=
∑

k

z̄kak.

The inversion formulas

σ
(3)
k = 2a∗

kak − I, σ
(1)
k = σ

(3)
1 · · ·σ

(3)
k−1(ak + a∗

k), σ
(2)
k = iσ

(3)
1 · · ·σ

(3)
k−1(ak − a∗

k),

show thatCAR(h) is isomorphic toMat(2n). The Jordan–Wigner representation plays for fermions the same role
as theSchrödingerrepresentationof the CCR: If dim h < ∞ then any irreducible representation ofCAR(h) is
equivalent to the Jordan–Wigner representation.
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