Conductance and AC Spectrum

Joint work with Laurent Bruneau (Université de Cergy-Pontoise) Vojkan Jakšić (McGill University, Montreal) Yoram Last (Hebrew University, Jerusalem)

Claude-Alain Pillet (CPT – Université de Toulon)

8th Congress of Romanian Mathematicians – Iasi June 26–July 1, 2015

Büttiker-Landauer vs Thouless conductance

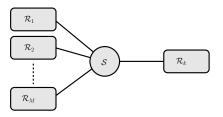
Physical vs mathematical characterization of conduction

Introduction

Transport Theory vs Spectral Analysis

Transport in Non-Equilibrium Quantum Statistical Mechanics

A sample S (open system) driven by reservoirs ...

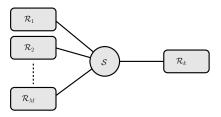


... can reach a current carrying steady state

Transport Theory vs Spectral Analysis

Transport in Non-Equilibrium Quantum Statistical Mechanics

A sample \mathcal{S} (open system) driven by reservoirs . . .



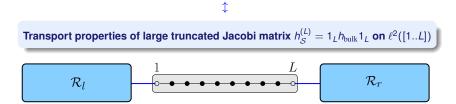
... can reach a current carrying steady state

\$

Spectral Properties of the (bulk) sample Hamiltonian h_S

Program

Spectral properties of infinite Jacobi matrix h_{bulk} on $\ell^2(\mathbb{Z}_+)$

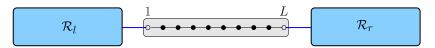


Program

Spectral properties of infinite Jacobi matrix h_{bulk} on $\ell^2(\mathbb{Z}_+)$

\$

Transport properties of large truncated Jacobi matrix $h_{S}^{(L)} = 1_{L} h_{\text{bulk}} 1_{L}$ on $\ell^{2}([1..L])$



Physics

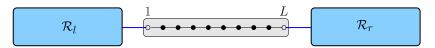
- Tranport properties and scaling theory of disordered 1D samples: Thouless, Anderson, Lee, Landauer,... (${\simeq}1970{-}1980)$
- Scattering theory of steady state currents: Landauer, Büttiker, Fisher, Lee, Imry,...(≃1970–1990)

Program

Spectral properties of infinite Jacobi matrix h_{bulk} on $\ell^2(\mathbb{Z}_+)$

\$

Transport properties of large truncated Jacobi matrix $h_{S}^{(L)} = 1_{L} h_{\text{bulk}} 1_{L}$ on $\ell^{2}([1..L])$



Physics

- Tranport properties and scaling theory of disordered 1D samples: Thouless, Anderson, Lee, Landauer,... (${\simeq}1970{-}1980)$
- Scattering theory of steady state currents: Landauer, Büttiker, Fisher, Lee, Imry,...(≃1970–1990)

Mathematics

- Spectral theory of 1D Jacobi matrices ... (1980–)
- Rigorous Landauer-Büttiker formalism: Cornean-Jensen-Moldoveanu, Aschbacher-Jakšić-Pautrat-P, Nenciu, Ben-Sâad-P (2005–2010)

 Pioneering work: "Conductance and Spectral Properties". Yoram Last, unpublished PhD thesis (Technion 1994)

- Pioneering work: "Conductance and Spectral Properties". Yoram Last, unpublished PhD thesis (Technion 1994)
- Bruneau, Jakšić, P: Landauer-Büttiker formula and Schrödinger conjecture. CMP 319, 501–513 (2013)
- Jakšić, Landon, P: Entropic fluctuations in XY chains and reflectionless Jacobi matrices. AHP 14, 1775–1800 (2013)
- Jakšić, Landon, Panati: A note on reflectionless Jacobi matrices. CMP 332, 827–838 (2014)
- Bruneau, Jakšić, Last, P: Landauer-Büttiker and Thouless conductance. CMP 338, 347–366 (2015)
- Bruneau, Jakšić, Last, P: Conductance and absolutely continuous spectrum of 1D samples. Submitted

The model

The model — One particle setup

The Sample

Bulk Hamiltonian: $h_{\text{bulk}} = -\Delta + v$ on $\mathcal{H}_{\text{bulk}} = \ell^2(\mathbb{Z}_+)$ Sample Hamiltonian: $h_S^{(L)}$ is the compression of h_{bulk} to $\mathcal{H}_S^{(L)} = \ell^2([0..L])$

Claude-Alain Pillet (CPT - Université de Toulon),

Conductance and AC Spectrum,

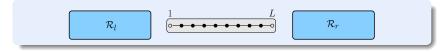
The model — One particle setup

The Sample

Bulk Hamiltonian: $h_{\text{bulk}} = -\Delta + v$ on $\mathcal{H}_{\text{bulk}} = \ell^2(\mathbb{Z}_+)$ Sample Hamiltonian: $h_S^{(L)}$ is the compression of h_{bulk} to $\mathcal{H}_S^{(L)} = \ell^2([0..L])$

The Reservoirs

WLOG: $\mathcal{H}_{l/r} = L^2(\mathbb{R}, d\nu_{l/r}(E)), h_{l/r} = E, \psi_{l/r} = 1$ $\Sigma_{l/r} = \{E \mid \frac{d\nu_{l/r,ac}}{dE} > 0\}$ is the essential support of spec_{ac}($h_{l/r}$)



The model — One particle setup

The Sample

Bulk Hamiltonian: $h_{\text{bulk}} = -\Delta + v$ on $\mathcal{H}_{\text{bulk}} = \ell^2(\mathbb{Z}_+)$ Sample Hamiltonian: $h_S^{(L)}$ is the compression of h_{bulk} to $\mathcal{H}_S^{(L)} = \ell^2([0..L])$

The Reservoirs

WLOG:
$$\mathcal{H}_{l/r} = L^2(\mathbb{R}, d\nu_{l/r}(E)), h_{l/r} = E, \psi_{l/r} = 1$$

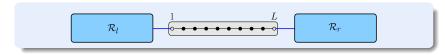
 $\Sigma_{l/r} = \{E \mid \frac{d\nu_{l/r,ac}}{dE} > 0\}$ is the essential support of spec_{ac}($h_{l/r}$)

The Coupling

$$\mathcal{H}^{(L)} = \mathcal{H}_I \oplus \mathcal{H}^{(L)}_{\mathcal{S}} \oplus \mathcal{H}_r, \qquad h^{(L)}_0 = h_I \oplus h^{(L)}_{\mathcal{S}} \oplus h_r, \qquad h^{(L)} = h^{(L)}_0 + \kappa h_T$$

tunneling strength $\kappa \neq 0$, tunneling Hamiltonian

$$h_{T} = |\psi_{I}\rangle\langle 1| + |1\rangle\langle\psi_{I}| + |\psi_{r}\rangle\langle L| + |L\rangle\langle\psi_{r}|$$



Claude-Alain Pillet (CPT - Université de Toulon),

Conductance and AC Spectrum,

Free electronic gas

• Hamiltonian $H^{(L)} = d\Gamma(h^{(L)})$ on the fermionic Fock space $\mathcal{F} = \Gamma_{-}(\mathcal{H}^{(L)})$

- Hamiltonian $H^{(L)} = d\Gamma(h^{(L)})$ on the fermionic Fock space $\mathcal{F} = \Gamma_{-}(\mathcal{H}^{(L)})$
- Creation/annihilation operators {a^{*}(f)/a(f)|f ∈ H^(L)} generate the algebra of observables CAR(H^(L))

- Hamiltonian $H^{(L)} = d\Gamma(h^{(L)})$ on the fermionic Fock space $\mathcal{F} = \Gamma_{-}(\mathcal{H}^{(L)})$
- Creation/annihilation operators {a^{*}(f)/a(f)|f ∈ H^(L)} generate the algebra of observables CAR(H^(L))
- Dynamics $\tau_t^{(L)}(A) = e^{itH^{(L)}}Ae^{-itH^{(L)}}$ on $CAR(\mathcal{H}^{(L)})$

- Hamiltonian $H^{(L)} = d\Gamma(h^{(L)})$ on the fermionic Fock space $\mathcal{F} = \Gamma_{-}(\mathcal{H}^{(L)})$
- Creation/annihilation operators {a^{*}(f)/a(f)|f ∈ H^(L)} generate the algebra of observables CAR(H^(L))
- Dynamics $\tau_t^{(L)}(A) = e^{itH^{(L)}}Ae^{-itH^{(L)}}$ on $CAR(\mathcal{H}^{(L)})$
- Initial state ω_{μ_l,μ_r} on CAR($\mathcal{H}^{(L)}$) s.t. $\omega_{\mu_l,\mu_r}|_{CAR(\mathcal{H}_{l/r})}$ is KMS at zero temperature and chemical potential $\mu_{l/r}$. We assume $\mu_r > \mu_l$

- Hamiltonian $H^{(L)} = d\Gamma(h^{(L)})$ on the fermionic Fock space $\mathcal{F} = \Gamma_{-}(\mathcal{H}^{(L)})$
- Creation/annihilation operators {a^{*}(f)/a(f)|f ∈ H^(L)} generate the algebra of observables CAR(H^(L))
- Dynamics $\tau_t^{(L)}(A) = e^{itH^{(L)}}Ae^{-itH^{(L)}}$ on $CAR(\mathcal{H}^{(L)})$
- Initial state ω_{μ_l,μ_r} on CAR($\mathcal{H}^{(L)}$) s.t. $\omega_{\mu_l,\mu_r}|_{CAR(\mathcal{H}_{l/r})}$ is KMS at zero temperature and chemical potential $\mu_{l/r}$. We assume $\mu_r > \mu_l$
- Charge current $J = -i[H^{(L)}, N_l]$ out of the left reservoir

- Hamiltonian $H^{(L)} = d\Gamma(h^{(L)})$ on the fermionic Fock space $\mathcal{F} = \Gamma_{-}(\mathcal{H}^{(L)})$
- Creation/annihilation operators {a^{*}(f)/a(f)|f ∈ H^(L)} generate the algebra of observables CAR(H^(L))
- Dynamics $\tau_t^{(L)}(A) = e^{itH^{(L)}}Ae^{-itH^{(L)}}$ on $CAR(\mathcal{H}^{(L)})$
- Initial state ω_{μ_l,μ_r} on CAR($\mathcal{H}^{(L)}$) s.t. $\omega_{\mu_l,\mu_r}|_{CAR(\mathcal{H}_{l/r})}$ is KMS at zero temperature and chemical potential $\mu_{l/r}$. We assume $\mu_r > \mu_l$
- Charge current $J = -i[H^{(L)}, N_l]$ out of the left reservoir
- Steady state current

$$\langle J \rangle_{\mu_l,\mu_r,L} = \lim_{T \to \infty} \frac{1}{T} \int_0^T \omega_{\mu_l,\mu_r} (\tau_t^{(L)}(J)) dt$$

=
$$\lim_{t \to \infty} \text{TD} - \lim \left[\omega_{\mu_l,\mu_r}(N_l) - \omega_{\mu_l,\mu_r} (\tau_t^{(L)}(N_l)) \right]$$

Büttiker-Landauer vs Thouless conductance

The Büttiker-Landauer formula

The steady state current is given by

$$\langle J \rangle_{\mu_l,\mu_r,L} = rac{1}{2\pi} \int_{\mu_l}^{\mu_r} \mathcal{T}^{(L)}(E) \mathrm{d}E$$

where

$$\mathcal{T}^{(L)}(E) = |S_{lr}(E)|^2 = 4\pi^2 \kappa^4 |\langle 1| (h^{(L)} - E - i0)^{-1} |L\rangle|^2 \frac{d\nu_{l,ac}}{dE}(E) \frac{d\nu_{r,ac}}{dE}(E)$$

is the sample's transmittance which satisfies the unitarity bound

 $0 \leq \mathcal{T}^{(L)}(E) \leq 1$

and vanishes for $E \notin \Sigma_I \cap \Sigma_r$ (\leftarrow open scattering channels)

The Büttiker-Landauer formula

The steady state current is given by

$$\langle J \rangle_{\mu_I,\mu_r,L} = rac{1}{2\pi} \int_{\mu_I}^{\mu_r} \mathcal{T}^{(L)}(E) \mathrm{d}E$$

where

$$\mathcal{T}^{(L)}(E) = |S_{lr}(E)|^2 = 4\pi^2 \kappa^4 |\langle 1|(h^{(L)} - E - i0)^{-1}|L\rangle|^2 \frac{d\nu_{l,ac}}{dE}(E) \frac{d\nu_{r,ac}}{dE}(E)$$

is the sample's transmittance which satisfies the unitarity bound

$$0 \leq \mathcal{T}^{(L)}(E) \leq 1$$

and vanishes for $E \notin \Sigma_I \cap \Sigma_r$ (\leftarrow open scattering channels)

The proof involves the scattering theory of the pair $(h_0^{(L)}, h^{(L)})$

- Aschbacher, Jakšić, Pautrat, P.: JMP 48, 032101 (2007).
- Nenciu: JMP 48, 033302 (2007)
- Ben Sâad, P: JMP 55, 075202 (2014)

Heuristics [Thouless 1977]

Consider an electron from the left reservoir on its journey towards the right reservoir. Let δt be the typical time such an electron spend in the sample. The time-energy uncertainty relation $\delta t \delta E \gtrsim 1$ sets a limit on the spread in energy of its wave function: the Thouless energy

$$E_{\mathrm{Th}} = \delta E \gtrsim rac{1}{\delta t}$$

Assuming a diffusive motion, we further have

 $L^2 = D\delta t$

and Einstein's relation links the diffusion constant D to the conductivity σ

$$\sigma = D arrho = rac{L^2}{\delta t} arrho \lesssim L^2 E_{
m Th} arrho$$

where ϱ is the density of states of the sample. Denoting ΔE the typical level spacing of the sample, we have $\varrho L \Delta E \sim 1$. Thus, for the sample's conductance $g = \sigma/L$ we derive

$$g \lesssim g_{
m Th} = rac{\mathcal{E}_{
m Th}}{\Delta \mathcal{E}}$$

g_{Th} is the Thouless conductance

Claude-Alain Pillet (CPT - Université de Toulon),

Conductance and AC Spectrum,

A tentative mathematical definition [Last 1994]

- For the sample's conductance to achieve its maximal value *g_{Th}*, the reservoir and its coupling should provide an optimal feeding of the sample with electrons.
- The coupling of the reservoirs to the sample should be reflectionless.
- This is achieved in a periodic structure

A tentative mathematical definition [Last 1994]

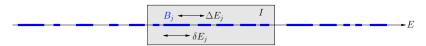
- For the sample's conductance to achieve its maximal value *g_{Th}*, the reservoir and its coupling should provide an optimal feeding of the sample with electrons.
- The coupling of the reservoirs to the sample should be reflectionless.
- This is achieved in a periodic structure

Define the periodic Hamiltonian on $\ell^2(\mathbb{Z})$ by

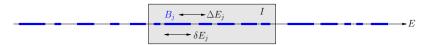
$$h_{\mathrm{crystal}}^{(L)} = -\Delta + v_{\mathrm{periodic}}^{(L)}$$

where $v_{\text{periodic}}^{(L)}$ is the *L*-periodic potential obtained by repeating the restriction $v|_{[0..L]}$

Consider an energy window $I =]\mu_I, \mu_r[$ containing several spectral bands B_j of $h_{crystal}^{(L)}$.



Consider an energy window $I =]\mu_I, \mu_r[$ containing several spectral bands B_i of $h_{crystal}^{(L)}$.



The energy uncertainty within a single band B_j is of the order of the bandwidth $\delta E_j = |B_j|$. A rough estimate of this uncertainty within *I* is

$$\delta E = \frac{\sum_{B_j \subset I} |B_j|}{\sum_{B_j \subset I} 1}$$

Consider an energy window $I =]\mu_I, \mu_r[$ containing several spectral bands B_j of $h_{crystal}^{(L)}$.

The energy uncertainty within a single band B_j is of the order of the bandwidth $\delta E_j = |B_j|$. A rough estimate of this uncertainty within *I* is

$$\delta E = \frac{\sum_{B_j \subset I} |B_j|}{\sum_{B_j \subset I} 1}$$

The mean level spacing within I is

$$\Delta E = \frac{|I|}{\sum_{B_j \subset I} 1}$$

Consider an energy window $I =]\mu_I, \mu_r[$ containing several spectral bands B_i of $h_{crystal}^{(L)}$.

The energy uncertainty within a single band B_j is of the order of the bandwidth $\delta E_i = |B_i|$. A rough estimate of this uncertainty within *I* is

$$\delta E = \frac{\sum_{B_j \subset I} |B_j|}{\sum_{B_j \subset I} 1}$$

The mean level spacing within I is

$$\Delta E = \frac{|I|}{\sum_{B_j \subset I} 1}$$

The Thouless conductance is roughly the normalized Lebesgue measure of ${\rm spec}(h_{\rm crystal}^{(L)})$ in I

$$g_{th} = rac{\delta E}{\Delta E} \simeq rac{|I \cap \operatorname{spec}(h_{\operatorname{crystal}}^{(L)})|}{|I|}$$

Contrary to the Thouless conductance which is an intrinsic property of the sample, the Büttiker-Landauer conductance

$$g_{\mathrm{BL}}(\mu_l,\mu_r,L) = rac{1}{2\pi(\mu_r-\mu_l)}\int_{\mu_l}^{\mu_r}\mathcal{T}^{(L)}(E)\mathrm{d}E$$

also depends on the reservoirs and its coupling to the sample.

Contrary to the Thouless conductance which is an intrinsic property of the sample, the Büttiker-Landauer conductance

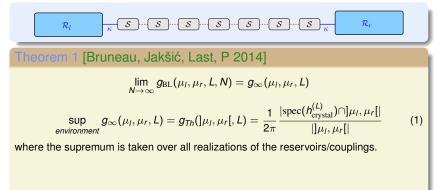
$$g_{\mathrm{BL}}(\mu_l,\mu_r,L) = rac{1}{2\pi(\mu_r-\mu_l)}\int_{\mu_l}^{\mu_r}\mathcal{T}^{(L)}(E)\mathrm{d}E$$

also depends on the reservoirs and its coupling to the sample. To investigate this dependence, consider repeating the sample N-times

Contrary to the Thouless conductance which is an intrinsic property of the sample, the Büttiker-Landauer conductance

$$g_{\mathrm{BL}}(\mu_l,\mu_r,L) = \frac{1}{2\pi(\mu_r-\mu_l)} \int_{\mu_l}^{\mu_r} \mathcal{T}^{(L)}(E) \mathrm{d}E$$

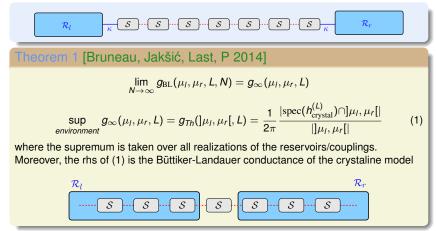
also depends on the reservoirs and its coupling to the sample. To investigate this dependence, consider repeating the sample N-times



Contrary to the Thouless conductance which is an intrinsic property of the sample, the Büttiker-Landauer conductance

$$g_{\mathrm{BL}}(\mu_l,\mu_r,L) = \frac{1}{2\pi(\mu_r-\mu_l)} \int_{\mu_l}^{\mu_r} \mathcal{T}^{(L)}(E) \mathrm{d}E$$

also depends on the reservoirs and its coupling to the sample. To investigate this dependence, consider repeating the sample N-times



Claude-Alain Pillet (CPT - Université de Toulon),

Physical vs mathematical characterization of conduction

Conduction & spectral properties

Physical characterization

The Landauer-Büttiker formula naturally leads to the set $\mathcal{E}_{\text{conduction}}$ of energies E for which

$$\liminf_{L\to\infty} \lim_{\delta E\downarrow 0} g_{LB}(E-\delta E, E+\delta E, L) = \frac{1}{2\pi} \liminf_{L\to\infty} \mathcal{T}^{(L)}(E) > 0$$

Conduction & spectral properties

Physical characterization

The Landauer-Büttiker formula naturally leads to the set $\mathcal{E}_{\text{conduction}}$ of energies E for which

$$\liminf_{L\to\infty} \lim_{\delta E\downarrow 0} g_{LB}(E - \delta E, E + \delta E, L) = \frac{1}{2\pi} \liminf_{L\to\infty} \mathcal{T}^{(L)}(E) > 0$$

Mathematical characterization

It is part of the folklore of the subject that conduction is linked to the absolutely continuous spectrum of h_{bulk} .

Physical characterization

The Landauer-Büttiker formula naturally leads to the set $\mathcal{E}_{\text{conduction}}$ of energies E for which

$$\liminf_{L\to\infty} \lim_{\delta E\downarrow 0} g_{LB}(E - \delta E, E + \delta E, L) = \frac{1}{2\pi} \liminf_{L\to\infty} \mathcal{T}^{(L)}(E) > 0$$

Mathematical characterization

It is part of the folklore of the subject that conduction is linked to the absolutely continuous spectrum of h_{bulk} .

Let Σ_{bulk} denote the essential support of the absolutely continuous spectrum of h_{bulk}

Conjecture [Bruneau, Jakšić, P 2013]

$$\mathcal{E}_{\text{conduction}} = \boldsymbol{\Sigma}_{\text{bulk}} \cap \boldsymbol{\Sigma}_{I} \cap \boldsymbol{\Sigma}_{r}$$

The Schrödinger conjecture

In terms of the Transfer matrix of hulk

$$T(E,L) = \begin{bmatrix} v(L) - E & -1 \\ 1 & 0 \end{bmatrix} \cdots \begin{bmatrix} v(1) - E & -1 \\ 1 & 0 \end{bmatrix}$$

we have

Theorem 2 [Bruneau, Jakšić, P 2013]

$$\mathcal{E}_{\text{conduction}} = \{ E \mid \sup_{L} \| T(E, L) \| < \infty \} \cap \Sigma_{I} \cap \Sigma_{r}$$
(2)

The Schrödinger conjecture

In terms of the Transfer matrix of hulk

$$T(E,L) = \begin{bmatrix} v(L) - E & -1 \\ 1 & 0 \end{bmatrix} \cdots \begin{bmatrix} v(1) - E & -1 \\ 1 & 0 \end{bmatrix}$$

we have

Theorem 2 [Bruneau,Jakšić,P 2013]

$$\mathcal{E}_{\text{conduction}} = \{ E \mid \sup_{L} \| T(E,L) \| < \infty \} \cap \Sigma_{I} \cap \Sigma_{r}$$
(2)

The rhs of (2) is known to be included in Σ_{bulk} . Thus, our conjecture reduces to the reverse inclusion $\Sigma_{bulk} \cap \Sigma_{\it l} \cap \Sigma_{\it r} \subset {\cal E}_{conduction}$ and turns out to be equivalent to the celebrated

Schrödinger Conjecture

$$\Sigma_{\text{bulk}} = \{ E \mid \sup_{L} \| T(E, L) \| < \infty \}$$

The Schrödinger conjecture

In terms of the Transfer matrix of hulk

$$T(E,L) = \begin{bmatrix} v(L) - E & -1 \\ 1 & 0 \end{bmatrix} \cdots \begin{bmatrix} v(1) - E & -1 \\ 1 & 0 \end{bmatrix}$$

we have

Theorem 2 [Bruneau,Jakšić,P 2013]

$$\mathcal{E}_{\text{conduction}} = \{ E \mid \sup_{L} \| T(E,L) \| < \infty \} \cap \Sigma_{I} \cap \Sigma_{r}$$
(2)

The rhs of (2) is known to be included in Σ_{bulk} . Thus, our conjecture reduces to the reverse inclusion $\Sigma_{bulk} \cap \Sigma_{\it l} \cap \Sigma_{\it r} \subset {\cal E}_{conduction}$ and turns out to be equivalent to the celebrated

Schrödinger Conjecture

$$\Sigma_{\text{bulk}} = \{ E \mid \sup_{L} \| T(E, L) \| < \infty \}$$

which was believed to be true until Artur Avila succeeded in constructing an ergodic potential for which (with probability 1) unbounded generalized eigenfunctions of h_{bulk} exist for a subset of positive Lebesgue measure of Σ_{bulk} [JAMS 28, 579–616 (2015)]

AC spectrum and conductance, finally

The main result of the our last paper is the following complete dynamical characterization of the ac-spectrum of h_{bulk} .

Theorem 3 [Bruneau, Jakšić, Last, P 2015]

Assume that $]\mu_l, \mu_r[\subset \Sigma_l \cap \Sigma_r]$. Then the following statements are equivalent:

• spec_{ac} $(h_{\text{bulk}}) \cap]\mu_l, \mu_r [= \emptyset$

$$\lim_{L\to\infty}g_{LB}(\mu_I,\mu_r,L)=0$$

$$\lim_{L\to\infty}g_{Th}(\mu_I,\mu_r,L)=0$$

Moreover, if spec_{ac} $(h_{\text{bulk}}) \cap]\mu_I, \mu_r \neq \emptyset$, then

 $\liminf_{L\to\infty} g_{LB}(\mu_I,\mu_r,L)>0,$

 $\liminf_{L\to\infty}g_{Th}(\mu_I,\mu_r,L)>0$

AC spectrum and conductance, finally

The main result of the our last paper is the following complete dynamical characterization of the ac-spectrum of h_{bulk} .

Theorem 3 [Bruneau, Jakšić, Last, P 2015]

Assume that $]\mu_l, \mu_r [\subset \Sigma_l \cap \Sigma_r$. Then the following statements are equivalent:

● spec_{ac}(h_{bulk}) \cap] μ_I , μ_r [= Ø

$$\lim_{L\to\infty}g_{LB}(\mu_I,\mu_r,L)=0$$

$$\lim_{L\to\infty}g_{Th}(\mu_I,\mu_r,L)=0$$

Moreover, if spec_{ac} $(h_{\text{bulk}}) \cap]\mu_I, \mu_r \neq \emptyset$, then

 $\liminf_{L\to\infty} g_{LB}(\mu_l,\mu_r,L)>0, \qquad \liminf_{L\to\infty} g_{Th}(\mu_l,\mu_r,L)>0$

Remarks.

- O ⇔ O was proved in Last's PhD thesis in the ergodic case. Gestezsy-Simon extended Last's result to deterministic full line operators. Their argument does not work for the half line operators.
- Only ③ ⇒ ③ requires the assumption]μ_l, μ_r[⊂ Σ_l ∩ Σ_r which ensures that the interval]μ_l, μ_r[is entirely open to scattering.

Main strategy: show that (), (2) and (3) are equivalent to

$$\lim_{L\to\infty}\int_{\mu_I}^{\mu_r} \|T(E,L)\|^{-2} \mathrm{d}E = 0$$

Main strategy: show that (), (2) and (3) are equivalent to

$$Iim_{L\to\infty} \int_{\mu_l}^{\mu_r} \|T(E,L)\|^{-2} \mathrm{d}E = 0$$

 The key lemma () ⇒ () is a simple consequence of a result of Carmona, Krutikov-Remling and Simon: If u = (1,0)^T, then

$$\lim_{L\to\infty}\frac{1}{\pi}\int f(E)\|T(E,L)u\|^{-2}\mathrm{d}E = \langle 1|f(h_{\mathrm{bulk}})|1\rangle$$

for $f \in C_0(\mathbb{R})$.

Main strategy: show that (), (2) and (3) are equivalent to

$$Iim_{L\to\infty} \int_{\mu_l}^{\mu_r} \|T(E,L)\|^{-2} \mathrm{d}E = 0$$

• The key lemma () \Rightarrow () is a simple consequence of a result of Carmona, Krutikov-Remling and Simon: If $u = (1, 0)^T$, then

$$\lim_{L\to\infty}\frac{1}{\pi}\int f(E)\|T(E,L)u\|^{-2}\mathrm{d}E=\langle 1|f(h_{\mathrm{bulk}})|1\rangle$$

for $f \in C_0(\mathbb{R})$.

• The reverse implication $\bigcirc \Rightarrow \bigcirc$ follows from the Simon-Last result:

 $\liminf_{L\to\infty}\|T(E,L)\|<\infty$

for a.e. $E \in \Sigma_{\text{bulk}}$

Main strategy: show that (), (2) and (3) are equivalent to

$$\lim_{L\to\infty}\int_{\mu_l}^{\mu_r} \|T(E,L)\|^{-2} \mathrm{d}E = 0$$

• The equivalence $\bigcirc \Leftrightarrow \bigcirc$ follows from Theorem 2.

Main strategy: show that (), () and () are equivalent to

$$\lim_{L\to\infty}\int_{\mu_I}^{\mu_r}\|T(E,L)\|^{-2}\mathrm{d}E = 0$$

- The equivalence $\bigcirc \Leftrightarrow \oslash$ follows from Theorem 2.
- The proof of $\textcircled{0} \Rightarrow \textcircled{0}$ is essentially Last's purely deterministic proof of $\textcircled{0} \Rightarrow \textcircled{0}$

Main strategy: show that (), () and () are equivalent to

$$\lim_{L\to\infty}\int_{\mu_l}^{\mu_r} \|T(E,L)\|^{-2} \mathrm{d}E = 0$$

- The equivalence $\bigcirc \Leftrightarrow \oslash$ follows from Theorem 2.
- The proof of $\textcircled{0} \Rightarrow \textcircled{0}$ is essentially Last's purely deterministic proof of $\textcircled{0} \Rightarrow \textcircled{0}$
- Last's proof of \bigcirc \Rightarrow \bigcirc relies on Kotani theory which yields the estimate

$$\limsup_{L \to \infty} |\operatorname{spec}_{\operatorname{ac}}(h_{\operatorname{crystal}}^{(L)}) \cap]\mu_{l}, \mu_{r}[| \leq |\operatorname{spec}_{\operatorname{ac}}(h_{\operatorname{bulk}}) \cap]\mu_{l}, \mu_{r}[|$$

with probability 1. Combining Last's deterministic estimate of ||T(E, L)|| for $E \in \operatorname{spec}(h_{\operatorname{crystal}}^{(L)})$ with a result of Deift-Simon on the rotation number of $h_{\operatorname{crystal}}^{(L)}$, we derive the estimate

$$\limsup_{L \to \infty} |\operatorname{spec}_{\operatorname{ac}}(h_{\operatorname{crystal}}^{(L)}) \cap]\mu_{l}, \mu_{r}[| \leq C |\operatorname{spec}_{\operatorname{ac}}(h_{\operatorname{bulk}}) \cap]\mu_{l}, \mu_{r}[|^{1/5}]$$

which yields $\bigcirc \Rightarrow \bigcirc$

Outlook

Suppose $\{v(x)\}_{x \in \mathbb{Z}_+}$ are "nice" i.i.d. random variables. Then h_{bulk} has pure point spectrum and Theorem 3 implies

$$\limsup_{L\to\infty}\limsup_{T\to\infty}\lim_{T\to\infty}\frac{1}{T}\int_0^T\omega_{\mu_I,\mu_I}(\tau_t^{(L)}(J))\mathrm{d}t=0$$

Suppose $\{v(x)\}_{x \in \mathbb{Z}_+}$ are "nice" i.i.d. random variables. Then h_{bulk} has pure point spectrum and Theorem 3 implies

$$\limsup_{L\to\infty}\limsup_{T\to\infty}\limsup_{T\to\infty}\frac{1}{T}\int_0^T\omega_{\mu_l,\mu_r}(\tau_t^{(L)}(J))\mathrm{d}t=0$$

Consider adding short-range many-body interactions to the second quantized Hamiltonian

$$H^{(L)} = \Gamma(h^{(L)}) + W, \qquad W = \sum_{x,y \in [0..L]} w(x-y)a_x^*a_y^*a_ya_x$$

The dynamics on $CAR(\mathcal{H}^{(L)})$ is still well defined

$$\tau_t^{(L)}(\mathbf{A}) = \mathrm{e}^{\mathrm{i}tH^{(L)}}\mathbf{A}\mathrm{e}^{-\mathrm{i}tH^{(L)}}$$

so is the current observable

$$J = -\mathrm{i}[H^{(L)}, N_l]$$

Suppose $\{v(x)\}_{x \in \mathbb{Z}_+}$ are "nice" i.i.d. random variables. Then h_{bulk} has pure point spectrum and Theorem 3 implies

$$\limsup_{L\to\infty}\limsup_{T\to\infty}\limsup_{T\to\infty}\frac{1}{T}\int_0^T\omega_{\mu_l,\mu_r}(\tau_t^{(L)}(J))\mathrm{d}t=0$$

Consider adding short-range many-body interactions to the second quantized Hamiltonian

$$H^{(L)} = \Gamma(h^{(L)}) + W, \qquad W = \sum_{x,y \in [0..L]} w(x-y)a_x^*a_y^*a_ya_x$$

The dynamics on $CAR(\mathcal{H}^{(L)})$ is still well defined

$$\tau_t^{(L)}(\mathbf{A}) = \mathrm{e}^{\mathrm{i}tH^{(L)}}\mathbf{A}\mathrm{e}^{-\mathrm{i}tH^{(L)}}$$

so is the current observable

$$J = -\mathrm{i}[H^{(L)}, N_l]$$

Does Anderson localization survive weak many-body interactions ? How to characterize it ?

We can still characterize localization/conduction on] μ_l, μ_r [by

$$\begin{split} \limsup_{L \to \infty} \limsup_{T \to \infty} \sup_{T \to \infty} \frac{1}{T} \int_0^T \omega_{\mu_l, \mu_r}(\tau_t^{(L)}(J)) \mathrm{d}t = 0 \\ \liminf_{L \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \omega_{\mu_l, \mu_r}(\tau_t^{(L)}(J)) \mathrm{d}t > 0 \end{split}$$

We can still characterize localization/conduction on] μ_l, μ_r [by

$$\begin{split} \limsup_{L \to \infty} \limsup_{T \to \infty} \sup_{T \to \infty} \frac{1}{T} \int_0^T \omega_{\mu_l,\mu_r}(\tau_l^{(L)}(J)) \mathrm{d}t = 0 \\ \liminf_{L \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \omega_{\mu_l,\mu_r}(\tau_l^{(L)}(J)) \mathrm{d}t > 0 \end{split}$$

Anderson impurity model

The simplest model in this category (repulsive interaction between electrons at x = 1 and x = 2)

$$W = Ua_1^*a_2^*a_2a_1, \qquad (U > 0)$$

We can still characterize localization/conduction on $]\mu_l, \mu_r[$ by

$$\begin{split} \limsup_{L \to \infty} \limsup_{T \to \infty} \sup_{T \to \infty} \frac{1}{T} \int_0^T \omega_{\mu_l,\mu_r}(\tau_l^{(L)}(J)) \mathrm{d}t = 0 \\ \liminf_{L \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \omega_{\mu_l,\mu_r}(\tau_l^{(L)}(J)) \mathrm{d}t > 0 \end{split}$$

Anderson impurity model

The simplest model in this category (repulsive interaction between electrons at x = 1 and x = 2)

$$W = Ua_1^*a_2^*a_2a_1, \qquad (U > 0)$$

Even this simplest model is completely open!

Thank you !