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Transport Theory vs Spectral Analysis

Transport in Non-Equilibrium Quantum Statistical Mechanics
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Spectral Properties of the (bulk) sample Hamiltonian hS
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Program

Spectral properties of infinite Jacobi matrix hbulk on `2(Z+)

l

Transport properties of large truncated Jacobi matrix h(L)
S = 1Lhbulk1L on `2([1..L])

L1
Rl Rr

Physics
Tranport properties and scaling theory of disordered 1D samples: Thouless,
Anderson, Lee, Landauer,. . . ('1970–1980)

Scattering theory of steady state currents: Landauer, Büttiker, Fisher, Lee,
Imry,. . . ('1970–1990)

Mathematics
Spectral theory of 1D Jacobi matrices . . . (1980–)

Rigorous Landauer-Büttiker formalism: Cornean-Jensen-Moldoveanu,
Aschbacher-Jakšić-Pautrat-P, Nenciu, Ben-Sâad-P (2005–2010)
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The model — One particle setup

The Sample

Bulk Hamiltonian: hbulk = −∆ + v on Hbulk = `2(Z+)

Sample Hamiltonian: h(L)
S is the compression of hbulk to H(L)

S = `2([0..L])

The Reservoirs
WLOG: Hl/r = L2(R, dνl/r (E)), hl/r = E , ψl/r = 1

Σl/r = {E |
dνl/r,ac

dE > 0} is the essential support of specac(hl/r )

The Coupling

H(L) = Hl ⊕H
(L)
S ⊕Hr , h(L)

0 = hl ⊕ h(L)
S ⊕ hr , h(L) = h(L)

0 + κhT

tunneling strength κ 6= 0, tunneling Hamiltonian

hT = |ψl 〉〈1|+ |1〉〈ψl |+ |ψr 〉〈L|+ |L〉〈ψr |

L1
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Claude-Alain Pillet (CPT – Université de Toulon), Conductance and AC Spectrum, 8/25



The model — One particle setup

The Sample

Bulk Hamiltonian: hbulk = −∆ + v on Hbulk = `2(Z+)

Sample Hamiltonian: h(L)
S is the compression of hbulk to H(L)

S = `2([0..L])

The Reservoirs
WLOG: Hl/r = L2(R, dνl/r (E)), hl/r = E , ψl/r = 1

Σl/r = {E |
dνl/r,ac

dE > 0} is the essential support of specac(hl/r )

The Coupling

H(L) = Hl ⊕H
(L)
S ⊕Hr , h(L)

0 = hl ⊕ h(L)
S ⊕ hr , h(L) = h(L)

0 + κhT

tunneling strength κ 6= 0, tunneling Hamiltonian

hT = |ψl 〉〈1|+ |1〉〈ψl |+ |ψr 〉〈L|+ |L〉〈ψr |

L1
Rl Rr
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The model — Many body setup

Free electronic gas

Hamiltonian H(L) = dΓ(h(L)) on the fermionic Fock space F = Γ−(H(L))

Creation/annihilation operators {a∗(f )/a(f )|f ∈ H(L)} generate the algebra of
observables CAR(H(L))

Dynamics τ (L)
t (A) = eitH(L)

A e−itH(L)
on CAR(H(L))

Initial state ωµl ,µr on CAR(H(L)) s.t. ωµl ,µr |CAR(Hl/r ) is KMS at zero temperature
and chemical potential µl/r . We assume µr > µl

Charge current J = −i[H(L),Nl ] out of the left reservoir

Steady state current

〈J〉µl ,µr ,L = lim
T→∞

1
T

∫ T

0
ωµl ,µr (τ

(L)
t (J))dt

= lim
t→∞

TD− lim
[
ωµl ,µr (Nl )− ωµl ,µr (τ

(L)
t (Nl ))

]
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Büttiker-Landauer vs Thouless conductance
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The Büttiker-Landauer formula

The steady state current is given by

〈J〉µl ,µr ,L =
1

2π

∫ µr

µl

T (L)(E)dE

where

T (L)(E) = |Slr (E)|2 = 4π2κ4|〈1|(h(L) − E − i0)−1|L〉|2
dνl,ac

dE
(E)

dνr,ac

dE
(E)

is the sample’s transmittance which satisfies the unitarity bound

0 ≤ T (L)(E) ≤ 1

and vanishes for E 6∈ Σl ∩ Σr (←open scattering channels)

The proof involves the scattering theory of the pair (h(L)
0 , h(L))

Aschbacher, Jakšić, Pautrat, P.: JMP 48, 032101 (2007).

Nenciu: JMP 48, 033302 (2007)

Ben Sâad, P: JMP 55, 075202 (2014)
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The Thouless conductance

Heuristics [Thouless 1977]
Consider an electron from the left reservoir on its journey towards the right reservoir.
Let δt be the typical time such an electron spend in the sample. The time-energy
uncertainty relation δtδE & 1 sets a limit on the spread in energy of its wave function:
the Thouless energy

ETh = δE &
1
δt
.

Assuming a diffusive motion, we further have

L2 = Dδt

and Einstein’s relation links the diffusion constant D to the conductivity σ

σ = D% =
L2

δt
% . L2ETh%

where % is the density of states of the sample. Denoting ∆E the typical level spacing of
the sample, we have %L∆E ∼ 1. Thus, for the sample’s conductance g = σ/L we
derive

g . gTh =
ETh

∆E

gTh is the Thouless conductance
Claude-Alain Pillet (CPT – Université de Toulon), Conductance and AC Spectrum, 12/25



The Thouless conductance

A tentative mathematical definition [Last 1994]
For the sample’s conductance to achieve its maximal value gTh, the reservoir and
its coupling should provide an optimal feeding of the sample with electrons.

The coupling of the reservoirs to the sample should be reflectionless.

This is achieved in a periodic structure

Define the periodic Hamiltonian on `2(Z) by

h(L)
crystal = −∆ + v (L)

periodic

where v (L)
periodic is the L-periodic potential obtained by repeating the restriction v |[0..L]

S S S S SS S
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The Thouless conductance

Consider an energy window I =]µl , µr [ containing several spectral bands Bj of h(L)
crystal.

I

δEj

E
∆EjBj

The energy uncertainty within a single band Bj is of the order of the bandwidth
δEj = |Bj |. A rough estimate of this uncertainty within I is

δE =

∑
Bj⊂I |Bj |∑

Bj⊂I 1

The mean level spacing within I is

∆E =
|I|∑

Bj⊂I 1

The Thouless conductance is roughly the normalized Lebesgue measure of
spec(h(L)

crystal) in I

gth =
δE
∆E
'
|I ∩ spec(h(L)

crystal)|
|I|
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Crystaline reservoirs

Contrary to the Thouless conductance which is an intrinsic property of the sample, the
Büttiker-Landauer conductance

gBL(µl , µr , L) =
1

2π(µr − µl )

∫ µr

µl

T (L)(E)dE

also depends on the reservoirs and its coupling to the sample.

To investigate this
dependence, consider repeating the sample N-times

κRl
RrS S S S SS κS

Theorem 1 [Bruneau, Jakšić, Last, P 2014]

lim
N→∞

gBL(µl , µr , L,N) = g∞(µl , µr , L)

sup
environment

g∞(µl , µr , L) = gTh(]µl , µr [, L) =
1

2π

|spec(h(L)
crystal)∩]µl , µr [|
|]µl , µr [|

(1)

where the supremum is taken over all realizations of the reservoirs/couplings.
Moreover, the rhs of (1) is the Büttiker-Landauer conductance of the crystaline model

S S S S SS S

Rl Rr
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lim
N→∞

gBL(µl , µr , L,N) = g∞(µl , µr , L)

sup
environment

g∞(µl , µr , L) = gTh(]µl , µr [, L) =
1

2π

|spec(h(L)
crystal)∩]µl , µr [|
|]µl , µr [|

(1)

where the supremum is taken over all realizations of the reservoirs/couplings.
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dependence, consider repeating the sample N-times

κRl
RrS S S S SS κS

Theorem 1 [Bruneau, Jakšić, Last, P 2014]

lim
N→∞

gBL(µl , µr , L,N) = g∞(µl , µr , L)

sup
environment

g∞(µl , µr , L) = gTh(]µl , µr [, L) =
1

2π

|spec(h(L)
crystal)∩]µl , µr [|
|]µl , µr [|

(1)

where the supremum is taken over all realizations of the reservoirs/couplings.
Moreover, the rhs of (1) is the Büttiker-Landauer conductance of the crystaline model

S S S S SS S

Rl Rr
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Physical vs mathematical characterization of conduction
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Conduction & spectral properties

Physical characterization
The Landauer-Büttiker formula naturally leads to the set Econduction of energies E for
which

lim inf
L→∞

lim
δE↓0

gLB(E − δE ,E + δE , L) =
1

2π
lim inf
L→∞

T (L)(E) > 0

Mathematical characterization
It is part of the folklore of the subject that conduction is linked to the absolutely
continuous spectrum of hbulk.

Let Σbulk denote the essential support of the absolutely continuous spectrum of hbulk

Conjecture [Bruneau,Jakšić,P 2013]

Econduction = Σbulk ∩ Σl ∩ Σr
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The Landauer-Büttiker formula naturally leads to the set Econduction of energies E for
which

lim inf
L→∞

lim
δE↓0

gLB(E − δE ,E + δE , L) =
1

2π
lim inf
L→∞

T (L)(E) > 0

Mathematical characterization
It is part of the folklore of the subject that conduction is linked to the absolutely
continuous spectrum of hbulk.

Let Σbulk denote the essential support of the absolutely continuous spectrum of hbulk

Conjecture [Bruneau,Jakšić,P 2013]
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The Schrödinger conjecture

In terms of the Transfer matrix of hbulk

T (E , L) =

[
v(L)− E −1

1 0

]
· · ·
[

v(1)− E −1
1 0

]
we have

Theorem 2 [Bruneau,Jakšić,P 2013]

Econduction = {E | sup
L
‖T (E , L)‖ <∞} ∩ Σl ∩ Σr (2)

The rhs of (2) is known to be included in Σbulk. Thus, our conjecture reduces to the
reverse inclusion Σbulk ∩ Σl ∩ Σr ⊂ Econduction and turns out to be equivalent to the
celebrated

Schrödinger Conjecture

Σbulk = {E | sup
L
‖T (E , L)‖ <∞}

which was believed to be true until Artur Avila succeeded in constructing an ergodic
potential for which (with probability 1) unbounded generalized eigenfunctions of hbulk
exist for a subset of positive Lebesgue measure of Σbulk [JAMS 28, 579–616 (2015)]
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AC spectrum and conductance, finally

The main result of the our last paper is the following complete dynamical
characterization of the ac-spectrum of hbulk.

Theorem 3 [Bruneau,Jakšić,Last,P 2015]
Assume that ]µl , µr [⊂ Σl ∩ Σr . Then the following statements are equivalent:

1 specac(hbulk)∩]µl , µr [= ∅
2 lim

L→∞
gLB(µl , µr , L) = 0

3 lim
L→∞

gTh(µl , µr , L) = 0

Moreover, if specac(hbulk)∩]µl , µr [ 6= ∅, then

lim inf
L→∞

gLB(µl , µr , L) > 0, lim inf
L→∞

gTh(µl , µr , L) > 0

Remarks.
1 ⇔ 3 was proved in Last’s PhD thesis in the ergodic case. Gestezsy-Simon

extended Last’s result to deterministic full line operators. Their argument does not
work for the half line operators.

Only 2 ⇒ . requires the assumption ]µl , µr [⊂ Σl ∩ Σr which ensures that the
interval ]µl , µr [ is entirely open to scattering.
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Ideas of the proof

Main strategy: show that 1 , 2 and 3 are equivalent to

0 lim
L→∞

∫ µr

µl

‖T (E , L)‖−2dE = 0

The key lemma 1 ⇒ 0 is a simple consequence of a result of Carmona,
Krutikov-Remling and Simon: If u = (1, 0)T , then

lim
L→∞

1
π

∫
f (E)‖T (E , L)u‖−2dE = 〈1|f (hbulk)|1〉

for f ∈ C0(R).

The reverse implication 0 ⇒ 1 follows from the Simon-Last result:

lim inf
L→∞

‖T (E , L)‖ <∞

for a.e. E ∈ Σbulk
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Ideas of the proof

Main strategy: show that 1 , 2 and 3 are equivalent to

0 lim
L→∞

∫ µr

µl

‖T (E , L)‖−2dE = 0

The equivalence 0 ⇔ 2 follows from Theorem 2.

The proof of 3 ⇒ 0 is essentially Last’s purely deterministic proof of 3 ⇒ 1

Last’s proof of 1 ⇒ 3 relies on Kotani theory which yields the estimate

lim sup
L→∞

|specac(h(L)
crystal)∩]µl , µr [| ≤ |specac(hbulk)∩]µl , µr [|

with probability 1. Combining Last’s deterministic estimate of ‖T (E , L)‖ for
E ∈ spec(h(L)

crystal) with a result of Deift-Simon on the rotation number of h(L)
crystal, we

derive the estimate

lim sup
L→∞

|specac(h(L)
crystal)∩]µl , µr [| ≤ C|specac(hbulk)∩]µl , µr [|1/5

which yields 0 ⇒ 3
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Outlook
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Many-body localization

Suppose {v(x)}x∈Z+ are ”nice” i.i.d. random variables. Then hbulk has pure point
spectrum and Theorem 3 implies

lim sup
L→∞

lim sup
T→∞

1
T

∫ T

0
ωµl ,µr (τ

(L)
t (J))dt = 0

Consider adding short-range many-body interactions to the second quantized
Hamiltonian

H(L) = Γ(h(L)) + W , W =
∑

x,y∈[0..L]

w(x − y)a∗x a∗y ay ax

The dynamics on CAR(H(L)) is still well defined

τ
(L)
t (A) = eitH(L)

Ae−itH(L)

so is the current observable
J = −i[H(L),Nl ]

Does Anderson localization survive weak many-body interactions ? How to
characterize it ?

Claude-Alain Pillet (CPT – Université de Toulon), Conductance and AC Spectrum, 23/25



Many-body localization

Suppose {v(x)}x∈Z+ are ”nice” i.i.d. random variables. Then hbulk has pure point
spectrum and Theorem 3 implies

lim sup
L→∞

lim sup
T→∞

1
T

∫ T

0
ωµl ,µr (τ

(L)
t (J))dt = 0

Consider adding short-range many-body interactions to the second quantized
Hamiltonian

H(L) = Γ(h(L)) + W , W =
∑

x,y∈[0..L]

w(x − y)a∗x a∗y ay ax

The dynamics on CAR(H(L)) is still well defined

τ
(L)
t (A) = eitH(L)

Ae−itH(L)

so is the current observable
J = −i[H(L),Nl ]

Does Anderson localization survive weak many-body interactions ? How to
characterize it ?
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Many-body localization

We can still characterize localization/conduction on ]µl , µr [ by

lim sup
L→∞

lim sup
T→∞

1
T

∫ T

0
ωµl ,µr (τ

(L)
t (J))dt = 0

lim inf
L→∞

lim inf
T→∞

1
T

∫ T

0
ωµl ,µr (τ

(L)
t (J))dt > 0

Anderson impurity model
The simplest model in this category (repulsive interaction between electrons at x = 1
and x = 2)

W = Ua∗1 a∗2 a2a1, (U > 0)

Even this simplest model is completely open!
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Thank you !
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