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Approach to Equilibrium

Uhlenbeck-Ford, Lectures in Statistical Mechanics (1963)

3. The approach to equilibrium; the ideas of Boltzmans. How can one
“explain™ the irreversible behaviour of macroscopic systems from the
strictly reversible mechanical model? This question, which I call the
problem of Boltzmann, has dominated the whole initial development
of statistical mechanics and it is still being discussed. In its simplest
form, one must “explain’ in which sense an isolated (that is a con-
servative) mechanical system consisting of a very large number of
molecules approaches thermal equilibrium, in which all **macro-
scopic’ variables have reached steady values. This is sometimes
called the zeroth law of thermodynamics and it expresses the most
typical irreversible behaviour of macroscopic systcms familiar from
common observation,
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Approach to Equilibrium & The Second Law

J. Uffink: Bluff your Way in the Second Law of Thermodynamics.
Stud. Hist. Phil. Mod. Phys. 32 (2001).

[t is often said that this behaviour of thermodynamical systems (i.e. the approach
to equilibrium) is accompanied by an increase of entropy, and a consequence of the
second law. But this idea actually lacks a theoretical foundation: for a non-equilibrium
state there is in general no thermodynamic entropy —or temperature- at all. We get no
further than where Clausius was in 1864 (see page 28): the second law cannot be seen
as a statement about the quantities of the system, but also involves its environment.
Planck (1897, § 112) too emphasised that the approach to equilibrium has nothing
to do with the second law. This aspect of time-asymmetry is woven much deeper in
the theory.
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Approach to Equilibrium vs. Return to Equilibrium

Commun. math. Phys. 31, 171—189 (1973)
© by Springer-Verlag 1973

Return to Equilibrium

Derek W. Robinson
Department of Physics, University of Aix-Marseille, II, Marseille-Luminy, France

Received October 24, 1972

Abstract. The problem of return to equilibrium is phrased in terms of a C*-algebra 21,
and two one-parameter groups of automorphisms 7, 7" corresponding to the unperturbed
and locally perturbed evolutions. The asymptotic evolution, under t, of *-invariant, and
P-K.M.S,, states is considered. This study is a generalization of scattering theory and
results concerning the existence of limit states are obtained by techniques similar to those
used to prove the existence, and intertwining properties, of wave-operators. Conditions
of asymptotic abelianness provide the necessary dispersive properties for the return to
equilibrium. It is demonstrated that the t"-equilibrium states and their limit states are
coupled by automorphisms with a quasi-local property; they are not necessarily normal
with respect to one another. An application to the X — Y model is given which extends
previously known results and other applications, and examples, are given for the Fermi gas.

L Introduction

‘We examine general properties of systems whose dynamics have been
locally perturbed and illustrate these properties with examples. Our
specific interest is whether systems, that have been perturbed in this
manner, return to equilibrium under the unperturbed evolution. In
this context we consider the behaviour of states which are invariant,
or satisfy the K.M.S. condition, for the perturbed dynamics. We demon-
strate that this type of problem is tractable with methods which are a
natural generalization of scattering theory.
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Nonequilibrium Quantum Statistical Mechanics

More recent results (last 25 years) inspired by some deep papers by Ruelle and
Gallavotti—-Cohen from the mate 90’:

@ Return to equilibrium for physically relevant models (major contributions by Jan on
Pauli-Fierz models).

Relaxation to non-equilibrium steady states.

Linear response theory a la Green-Kubo, fluctuation—dissipation.
Strict positivity of entropy production.

Repeated measurements and fluctuation relations.

© ©6 6 o o
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Nonequilibrium Quantum Statistical Mechanics
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Framework

Toolbox: Quantum Spin Systems

o Ruelle: Statistical Mechanics: Rigorous Results
@ Bratteli-Robinson: Operator Algebras and Quantum Statistical Mechanics 2
o Israel: Convexity in the Theory of Lattice Gases
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Framework

Toolbox: Quantum Spin Systems

o Ruelle: Statistical Mechanics: Rigorous Results
@ Bratteli-Robinson: Operator Algebras and Quantum Statistical Mechanics 2
o Israel: Convexity in the Theory of Lattice Gases

Finite Systems
F is the set of finite subsets of the lattice 9.
For x € 29, Hy = C™.
For A € F, Ha = QxenHx,
and 20y = L(H,) is the C*-algebra of physical observables.
States: 2 > A — tryy, (pA).
von Neumann entropy

© 6 6 6 ¢ o

S(p) = —try, (plog p) € [0, m|A]],

and relative entropy

400 otherwise.

trag, (p(log p — log pg)) > 0 if Ranp C Ran po,
S(plpo) =

4
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Framework

Thermodynamic (van Hove) Limit
Natural isometric injection 2, C 2Ap, for A C A'.
Asn = Upe#™Un ~» quasi-local spin algebra 26 = A,
Natural group action (translations) ¢ : Z¢ — Aut().

Set of states S(2), of translation-invariant states S;(2).

Restriction to finite box A = [/, /]9 € F:
S(A) > p— pp € S(An).
Mean entropy

S(en)
Al

is an affine weak*-upper semicontinuous function.
Mean relative entropy

Si(A) 3 p > s(p) = lim € [0, m],
Atz

. S(palpon
s(plpo) = ,\l'&‘d % >0,

whenever it exists. s(p|po) = 0 % p = po.
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Framework

Interactions
@ B’ the set of translation invariant interactions ® = {®(X)}xc+

O(X) = o(X)" €Ay,  S(X+x) = (®(X)),
such that for some r > 0,

Iollr =D 1o)X~ < co.
X30

@ Local Hamiltonian for A € F

HA(®) = D o(X).

XCA

@ Mean energy

() (@)
Bo=2 g AE)=lim TN

for p € S)().
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Framework

Thermodynamics
o Pressure at inverse temperature 8

1

P(BP) = lim — logtr (e PHA(®)) |
(5®) Arzd || < ( )

o Gibbs variational principle [Robinson,Lanford (1967-68)]

P(s®) = 2 (s(p) = Bp(Es))

Maximizers are Equilibrium States for the interaction So.

0 Seq(B®) is the set of these equilibrium states. It is a non-empty
weak*-compact face of S;(2() and a simplex whose extremal points are
extremal translation-invariant states.
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Framework

Dynamics & KMS States
o Dynamics R — Aut(%) is defined as
ozfp(A) = lim em"/‘(‘b)Aefm-”‘(q))7
A1z
and S (2A) demotes the set of ag-invariant states.

) for e are characterized by the KMS-condition
[Haag—Hugenholtz—Winninck 1967]: p € S(2) is (as, 8)-KMS if, for all
A, B € 2, the function

R >t~ Fap(t) = p(ag,(A)B)

has an extension analytic in the strip {z € C | 0 < Im(z2) < 3}, bounded
and continuous on its closure, and satisfying the Kubo—Martin—Schwinger
boundary condition

FaB(t+i8) = p(Baj(A)).
Any (ae, 8)-KMS state is ag-invariant.

o
(S ch(,B‘b) <~ pc S[(Q[) is (Oéq), ﬂ)-KMS
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Framework

In the following we set 3 = 1

Enforcing translation invariance

4

all local observables are macro
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Equilibrium Steady States )
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Equilibrium Steady States

Definition
Forpe §(), e B and T > 0 let

1 /7 ;
ﬁT:?/O p o agdt,

and denote by Sy (p, ) the set of weak™*-limit points of the net (57)7>0-

Elements of S (p, ®) are called Equilibrium Steady State (ESS) associated to the
initial state p and the interaction ¢.
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Equilibrium Steady States

Forpe §(), e B and T > 0 let

1 fv ;
pT:?/O p o agdt,

and denote by Sy (p, ) the set of weak™*-limit points of the net (57)7>0-

Elements of S (p, ®) are called Equilibrium Steady State (ESS) associated to the
initial state p and the interaction ¢.

@ Clearly S4(p, @) is a non-empty subset of S;(2) N Se ().
@ When do we have approach to equilibrium in the sense: S;(p, ) C Seq(P) ?
@ Whenis S1(p, ®) a singleton, i.e., o1 — p+ ?

@ More generally: What are the properties of ESS following from this definition and
not depending on details of p and ¢ ?
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Approach to equilibrium — the Second Law - time’s arrow

N
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Approach to equilibrium — the Second Law — time’s arrow

It is a well known elementary property of unitary evolution that it preserves the von
Neumann entropy. The question is more delicate when it comes to infinite systems:
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Approach to equilibrium — the Second Law — time’s arrow

It is a well known elementary property of unitary evolution that it preserves the von
Neumann entropy. The question is more delicate when it comes to infinite systems:

A Question of Ruelle

It is unclear to the author whether the evolution of an infinite system should in-
crease its entropy per unit volume. Another possibility is that, when the time tends
to oo, a state has a limit with strictly larger entropy.

David Ruelle (1967)
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Approach to equilibrium — the Second Law — time’s arrow

It is a well known elementary property of unitary evolution that it preserves the von
Neumann entropy. The question is more delicate when it comes to infinite systems:

A Question of Ruelle

It is unclear to the author whether the evolution of an infinite system should in-
crease its entropy per unit volume. Another possibility is that, when the time tends

to oo, a state has a limit with strictly larger entropy.
David Ruelle (1967) y

Conservation Laws

Forany p € S)(2), any ¢ € B"and any T, t € R, the following hold:
@ Mean Entropy [Lanford—Robinson 1968].

S(pr) = S(p 0 o) = S(p).

@ Mean Energy [Jaksic—P—Tauber 2022].

pr(Ee) = po ap(Es) = p(Eo). )
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Approach to equilibrium — the Second Law — time’s arrow

Consequently, (semi-)continuity gives that for any p4 € S+ (p, ®),

s(p+) 2 s(p),  p+(Ee) = p(Eo).
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Approach to equilibrium — the Second Law — time’s arrow
Consequently, (semi-)continuity gives that for any p4 € Sy (p, ®),

s(p+) 2 s(p),  p+(Ee) = p(Eo).

If approach to equilibrium holds non-trivially, i.e., p & So(2l) and p; € Seq(®P), then

s(p+) > s(p)-
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Approach to equilibrium — the Second Law — time’s arrow
Consequently, (semi-)continuity gives that for any p4 € Sy (p, ®),

s(p+) 2 s(p),  p+(Ee) = p(Eo).

If approach to equilibrium holds non-trivially, i.e., p & So(2l) and p; € Seq(®P), then

s(p+) > s(p)-

Proof. Suppose s(p+) = s(p), then the variational principle gives
P(®) = s(p+) — p+(Ee) = s(p) — p(Eo)

SO
P E Seq(®) C S (),

a contradiction.
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Approach to equilibrium — the Second Law — time’s arrow
Consequently, (semi-)continuity gives that for any p4 € Sy (p, ®),

s(p+) 2 s(p),  p+(Ee) = p(Eo).

If approach to equilibrium holds non-trivially, i.e., p & So(2l) and p; € Seq(®P), then

s(p+) > s(p)-

Proof. Suppose s(p+) = s(p), then the variational principle gives
P(®) = s(p+) — p+(Ee) = s(p) — p(Eo)

SO
P E Seq(®) C S (),

a contradiction.

@ Strict increase of the mean entropy =- irreversibility.

@ This is a conditional result. The only known examples are [Emch-Radin 1970,
Lanford-Robinson 1971]. We are seeking unconditional results!
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Approach to equilibrium — the Second Law — time’s arrow

Weak Gibbs states were introduced in classical dynamical systems by [Yuri 2002]. To
our knowledge, they did not appear previously in the quantum context.

A state p € §;(2) is weak Gibbs for the interaction ® € B" whenever, for any finite box

A = [—1,119 € F, there exists a constant C such that
—Hh(®) —Hp(®)
_q e~ e . log Ca
— <A< CA———c =
Notr (e=Hn(®) = PA= BN (e=Hn(®) /\ITnzqd Al

The set of weak Gibbs states for ¢ is denoted by Syg(P).
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A state p € §;(2) is weak Gibbs for the interaction ® € B" whenever, for any finite box

A = [—1,119 € F, there exists a constant C such that
—Hh(®) —Hp(®)
_q e~ e . log Ca
— <A< CA———c =
Notr (e=Hn(®) = PA= BN (e=Hn(®) /\ITrEd Al

The set of weak Gibbs states for ¢ is denoted by Syg(P).

Proposition [Jaksi¢c—P—Tauber 2022], using [Araki 1969] and [Lenci—Rey-Bellet 2005]
0 Syg(P) C Seq(P).

o If either d = 1 and ¢ is finite range, or d > 1 and ||®||; < r, then Syg(P) = Seq(P). y
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Approach to equilibrium — the Second Law — time’s arrow

Weak Gibbs states were introduced in classical dynamical systems by [Yuri 2002]. To
our knowledge, they did not appear previously in the quantum context.

A state p € §;(2) is weak Gibbs for the interaction ® € B" whenever, for any finite box
A = [—1,119 € F, there exists a constant C such that

—H(®) —Hn(®)
_1 e M e . log Ca
S <G
Notr (e=Hn(®) = PR = O (e=Hn(®) /\ITrEd |A]

The set of weak Gibbs states for ¢ is denoted by Syg(P).

Proposition [Jaksi¢c—P—Tauber 2022], using [Araki 1969] and [Lenci—Rey-Bellet 2005]
0 Syg(P) C Seq(P).
o If either d = 1 and ¢ is finite range, or d > 1 and ||®||; < r, then Syg(P) = Seq(P). y

Conjecture. Forany r > 0 and ® € B', Syg(P) = Seq(P). y

Remark. For classical spin systems, the equality Sys(P) = Seq(®) holds for all
® e BO [Pfister-Sullivan 2019]. J
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Approach to equilibrium — the Second Law — time’s arrow

The following property is a direct consequence of the previous definition

Entropy balance relation for extended translation-invariant spin systems

Suppose that ® € B and p € Syg(®). Then, for any w € S;(2) one has

0< lim Salen)

A zd IA| = s(w|p) = —s(w) + w(Ee) + P(P),

with equality iff w € Seq(®P).

and is the central tool in the proof of our main unconditional results
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Approach to equilibrium — the Second Law — time’s arrow

The following property is a direct consequence of the previous definition

Entropy balance relation for extended translation-invariant spin systems

Suppose that ® € B and p € Syg(®). Then, for any w € S;(2) one has

0< lim Salen)

AtzZd IA| = s(w|p) = —s(w) + w(Ee) + P(P),

with equality iff w € Seq(®P).

and is the central tool in the proof of our main unconditional results

For W, ® € B', suppose that Seq(V) = {p} (high temp.) with p € Syg(W¥) \ So ().
Then, any p+ € S (p, ) satisfies

p+(Ev) > p(Ev).

@ Strict increase of the mean energy = irreversibility p S (p+, V).
o Conjecture: s(p+) > s(p).
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Approach to equilibrium — the Second Law — time’s arrow

Remarks.

@ Theorems 1 & 2 display the fundamental irreversibility of approach to
equilibrium, contrasting with the reversibility of return to equilibrium.

o Whether S (p, ®) C Seq(®P) is a delicate dynamical problem which can only
be answered in the context of concrete models [Emch-Radin 1970,
Lanford-Robinson 1971].

@ Our results apply to lattice fermions [Araki—Moriya 2003] (with the minimal
changes to comply with gauge-invariance).
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Outlook
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Outlook

o First steps in a research program around approach to equilibrium and time’s arrow
in classical and quantum statistical mechanics.

@ We have related results on adiabatic (i.e., quasi-static) evolution of translation
invariant spin systems.
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Thank you!



All the best for the next 10 years Jan!
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