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Nonequilibrium Quantum Statistical Mechanics

More recent results (last 25 years) inspired by some deep papers by Ruelle and
Gallavotti–Cohen from the mate 90’:

Return to equilibrium for physically relevant models (major contributions by Jan on
Pauli-Fierz models).

Relaxation to non-equilibrium steady states.

Linear response theory à la Green-Kubo, fluctuation–dissipation.

Strict positivity of entropy production.

Repeated measurements and fluctuation relations.

...
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Framework

Toolbox: Quantum Spin Systems

Ruelle: Statistical Mechanics: Rigorous Results

Bratteli-Robinson: Operator Algebras and Quantum Statistical Mechanics 2

Israel: Convexity in the Theory of Lattice Gases

Finite Systems
F is the set of finite subsets of the lattice Zd .

For x ∈ Zd , Hx = Cm.

For Λ ∈ F , HΛ = ⊗x∈ΛHx ,

and AΛ = L(HΛ) is the C∗-algebra of physical observables.

States: AΛ 3 A 7→ trHΛ
(ρA).

von Neumann entropy

S(ρ) = −trHΛ
(ρ log ρ) ∈ [0,m|Λ|],

and relative entropy

S(ρ|ρ0) =

trHΛ
(ρ(log ρ− log ρ0)) ≥ 0 if Ran ρ ⊂ Ran ρ0,

+∞ otherwise.
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Framework

Thermodynamic (van Hove) Limit
Natural isometric injection AΛ ⊂ AΛ′ for Λ ⊂ Λ′.

Afin = ∪Λ∈FAΛ  quasi-local spin algebra A = Afin
‖ ‖.

Natural group action (translations) ϕ : Zd → Aut(A).

Set of states S(A), of translation-invariant states SI(A).

Restriction to finite box Λ = [−l, l]d ∈ F :

S(A) 3 ρ 7→ ρΛ ∈ S(AΛ).

Mean entropy

SI(A) 3 ρ 7→ s(ρ) = lim
Λ↑Zd

S(ρΛ)

|Λ|
∈ [0,m],

is an affine weak∗-upper semicontinuous function.

Mean relative entropy

s(ρ|ρ0) = lim
Λ↑Zd

S(ρΛ|ρ0Λ)

|Λ|
≥ 0,

whenever it exists. s(ρ|ρ0) = 0 6⇒ ρ = ρ0.

, 14/31



Framework

Interactions
Br the set of translation invariant interactions Φ = {Φ(X)}X∈F

Φ(X) = Φ(X)∗ ∈ AX , Φ(X + x) = ϕx (Φ(X)),

such that for some r > 0,

‖Φ‖r =
∑
X30

‖Φ(X)‖ er(|X |−1) <∞.

Local Hamiltonian for Λ ∈ F

HΛ(Φ) =
∑
X⊂Λ

Φ(X).

Mean energy

EΦ =
∑
X30

Φ(X)

|X |
, ρ(EΦ) = lim

Λ↑Zd

ρ(HΛ(Φ))

|Λ|

for ρ ∈ SI(A).
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Framework

Thermodynamics
Pressure at inverse temperature β

P(βΦ) = lim
Λ↑Zd

1
|Λ|

log tr
(

e−βHΛ(Φ)
)
.

Gibbs variational principle [Robinson,Lanford (1967-68)]

P(βΦ) = sup
ρ∈SI (A)

(s(ρ)− βρ(EΦ))

Maximizers are Equilibrium States for the interaction βΦ.

Seq(βΦ) is the set of these equilibrium states. It is a non-empty
weak∗-compact face of SI(A) and a simplex whose extremal points are
extremal translation-invariant states.
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Framework

Dynamics & KMS States
Dynamics R→ Aut(A) is defined as

αt
Φ(A) = lim

Λ↑Zd
eitHΛ(Φ)A e−itHΛ(Φ),

and SΦ(A) demotes the set of αΦ-invariant states.

Thermal equilibrium states for αΦ are characterized by the KMS-condition
[Haag–Hugenholtz–Winninck 1967]: ρ ∈ S(A) is (αΦ, β)-KMS if, for all
A,B ∈ A, the function

R 3 t 7→ FA,B(t) = ρ(αt
Φ(A)B)

has an extension analytic in the strip {z ∈ C | 0 < Im(z) < β}, bounded
and continuous on its closure, and satisfying the Kubo–Martin–Schwinger
boundary condition

FA,B(t + iβ) = ρ(Bαt
Φ(A)).

Any (αΦ, β)-KMS state is αΦ-invariant.

ρ ∈ Seq(βΦ) ⇐⇒ ρ ∈ SI(A) is (αΦ, β)-KMS.
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Framework

In the following we set β = 1

Enforcing translation invariance

⇓
all local observables are macro
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Equilibrium Steady States
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Equilibrium Steady States

Definition
For ρ ∈ SI(A), Φ ∈ Br and T > 0 let

ρT =
1
T

∫ T

0
ρ ◦ αt

Φdt ,

and denote by S+(ρ,Φ) the set of weak∗-limit points of the net (ρT )T>0.

Elements of S+(ρ,Φ) are called Equilibrium Steady State (ESS) associated to the
initial state ρ and the interaction Φ.

Clearly S+(ρ,Φ) is a non-empty subset of SI(A) ∩ SΦ(A).

When do we have approach to equilibrium in the sense: S+(ρ,Φ) ⊂ Seq(Φ) ?

When is S+(ρ,Φ) a singleton, i.e., ρT → ρ+ ?

More generally: What are the properties of ESS following from this definition and
not depending on details of ρ and Φ ?
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Approach to equilibrium – the Second Law – time’s arrow

, 21/31



Approach to equilibrium – the Second Law – time’s arrow

It is a well known elementary property of unitary evolution that it preserves the von
Neumann entropy. The question is more delicate when it comes to infinite systems:

A Question of Ruelle

It is unclear to the author whether the evolution of an infinite system should in-
crease its entropy per unit volume. Another possibility is that, when the time tends
to∞, a state has a limit with strictly larger entropy.

David Ruelle (1967)

Conservation Laws

For any ρ ∈ SI(A), any Φ ∈ Br and any T , t ∈ R, the following hold:

Mean Entropy [Lanford–Robinson 1968].

s(ρT ) = s(ρ ◦ αt
Φ) = s(ρ).

Mean Energy [Jakšić–P–Tauber 2022].

ρT (EΦ) = ρ ◦ αt
Φ(EΦ) = ρ(EΦ).
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Mean Energy [Jakšić–P–Tauber 2022].

ρT (EΦ) = ρ ◦ αt
Φ(EΦ) = ρ(EΦ).

, 22/31



Approach to equilibrium – the Second Law – time’s arrow

It is a well known elementary property of unitary evolution that it preserves the von
Neumann entropy. The question is more delicate when it comes to infinite systems:

A Question of Ruelle

It is unclear to the author whether the evolution of an infinite system should in-
crease its entropy per unit volume. Another possibility is that, when the time tends
to∞, a state has a limit with strictly larger entropy.

David Ruelle (1967)

Conservation Laws

For any ρ ∈ SI(A), any Φ ∈ Br and any T , t ∈ R, the following hold:

Mean Entropy [Lanford–Robinson 1968].

s(ρT ) = s(ρ ◦ αt
Φ) = s(ρ).

Mean Energy [Jakšić–P–Tauber 2022].
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Approach to equilibrium – the Second Law – time’s arrow

Consequently, (semi-)continuity gives that for any ρ+ ∈ S+(ρ,Φ),

s(ρ+) ≥ s(ρ), ρ+(EΦ) = ρ(EΦ).

Theorem 1
If approach to equilibrium holds non-trivially, i.e., ρ 6∈ SΦ(A) and ρ+ ∈ Seq(Φ), then

s(ρ+) > s(ρ).

Proof. Suppose s(ρ+) = s(ρ), then the variational principle gives

P(Φ) = s(ρ+)− ρ+(EΦ) = s(ρ)− ρ(EΦ)

so
ρ ∈ Seq(Φ) ⊂ SΦ(A),

a contradiction.

Strict increase of the mean entropy⇒ irreversibility.

This is a conditional result. The only known examples are [Emch-Radin 1970,
Lanford-Robinson 1971]. We are seeking unconditional results!
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Approach to equilibrium – the Second Law – time’s arrow

Weak Gibbs states were introduced in classical dynamical systems by [Yuri 2002]. To
our knowledge, they did not appear previously in the quantum context.

Definition
A state ρ ∈ SI(A) is weak Gibbs for the interaction Φ ∈ Br whenever, for any finite box
Λ = [−l, l]d ∈ F , there exists a constant CΛ such that

C−1
Λ

e−HΛ(Φ)

tr
(
e−HΛ(Φ)

) ≤ ρΛ ≤ CΛ
e−HΛ(Φ)

tr
(
e−HΛ(Φ)

) , lim
Λ↑Zd

log CΛ

|Λ|
= 0.

The set of weak Gibbs states for Φ is denoted by Swg(Φ).

Proposition [Jakšić–P–Tauber 2022], using [Araki 1969] and [Lenci–Rey-Bellet 2005]

Swg(Φ) ⊂ Seq(Φ).

If either d = 1 and Φ is finite range, or d ≥ 1 and ‖Φ‖r < r , then Swg(Φ) = Seq(Φ).

Conjecture. For any r > 0 and Φ ∈ Br , Swg(Φ) = Seq(Φ).

Remark. For classical spin systems, the equality Swg(Φ) = Seq(Φ) holds for all
Φ ∈ B0 [Pfister–Sullivan 2019].
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Approach to equilibrium – the Second Law – time’s arrow

The following property is a direct consequence of the previous definition

Entropy balance relation for extended translation-invariant spin systems

Suppose that Φ ∈ Br and ρ ∈ Swg(Φ). Then, for any ω ∈ SI(A) one has

0 ≤ lim
Λ↑Zd

S(ωΛ|ρΛ)

|Λ|
= s(ω|ρ) = −s(ω) + ω(EΦ) + P(Φ),

with equality iff ω ∈ Seq(Φ).

and is the central tool in the proof of our main unconditional results

Theorem 2
For Ψ,Φ ∈ Br , suppose that Seq(Ψ) = {ρ} (high temp.) with ρ ∈ Swg(Ψ) \ SΦ(A).
Then, any ρ+ ∈ S+(ρ,Φ) satisfies

ρ+(EΨ) > ρ(EΨ).

Strict increase of the mean energy⇒ irreversibility ρ 6∈ S+(ρ+,Ψ).

Conjecture: s(ρ+) > s(ρ).
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Approach to equilibrium – the Second Law – time’s arrow

Remarks.
Theorems 1 & 2 display the fundamental irreversibility of approach to
equilibrium, contrasting with the reversibility of return to equilibrium.

Whether S+(ρ,Φ) ⊂ Seq(Φ) is a delicate dynamical problem which can only
be answered in the context of concrete models [Emch-Radin 1970,
Lanford-Robinson 1971].

Our results apply to lattice fermions [Araki–Moriya 2003] (with the minimal
changes to comply with gauge-invariance).
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Outlook
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Outlook

First steps in a research program around approach to equilibrium and time’s arrow
in classical and quantum statistical mechanics.

We have related results on adiabatic (i.e., quasi-static) evolution of translation
invariant spin systems. More this afternoon in Vojkan’s talk.
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V. Jakšić-C.A.P., C. Tauber: A note on adiabatic time evolution and quasi-static
processes in translation-invariant quantum systems [arXiv:2204.02177].

, 29/31



Thank you!
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All the best for the next 10 years Jan!
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