Linear response theory
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Linear response theory is a special instance of first ordeugiation theory. Its purpose is to describe the
response of a mechanical system to external forces in thmeegf weak forcing. Of particular interest is the
response of systems which are driven out of some dynamicdil@iym by non-conservative mechanical forces
or thermal forces like temperature or density gradientds @hicle is a short introduction to some mathematical
results in quantum mechanical linear response theory. ¥ete[KTH] for an introduction to the physical aspects
of the subject.

1 Finitetimelinear response

The first problem of linear response theory is the deterrunaif the response of the system to the action of the
driving forces over a finite interval of time. We shall cormideparately the simple case of mechanical forcing and
the more delicate thermal drives.

The unperturbed system i& - or W*-dynamicalsystem(O, ) equipped with anodular invariant state.

We denote by the generator of the dynamiesby o the modular group of and by( its generatorQOy); further
denotes the set of selfadjoint elements’df We note that the important role of the modular structurdriadr
response theory was already apparent in [NVW].

Sincew is (0, —1)-KMS, for any A, B € O there exists a functioft’'( A, B; z) which is analytic in the strip
{z] —1 < Imz < 0}, bounded and continuous on its closure and such iat, B;6) = w(Ac’(B)) and
F(A, B;0 —1) = w(a?(B)A) for § € R. We shall abuse notation and denéteA, B; z) by eitherw(Ac?(B)) or
w(c™*(A)B) for —1 < Imz < 0. In particular, the canonical correlation df B € O is defined by

1 1
(A|B),, = / w(Ao;%(B))df = / F(A, B; —if) db.
0 0
One easily checks that it defines an inner product on the ezabrspac®,.;s (see [NVW]).
1.1 Mechanical drive
Let 7" be the dynamics o® generated by + i[V (¢), -], i.e., the solution of

Oy (A) =75 (0(A) +i[V (1), A]), 0.y (A) = 0(m 7 (A) +iV(s), (7 (A)]),

which satisfies*(A) = A for s = t. For simplicity, we assume that— V' (¢) belongs taC (R, Os¢). Standard
time-dependent perturbation theory yields (see [Quantymaihical systems])

5 A) = 775 (A) + / i[7%"5(V(u)), 7"~ “(A)] du + higher order terms
Thus, to first order in the perturbatidn, the changev o 75" — w is given by

(Aw)s~t = / Kt —u)V(u)du.



The operator valued response functiotu) : O — O#, whereO# denotes the dual @, is defined by
(Kw)V)(4) = w(i[v,7*(A)]), 1)

forw > 0 andXC(u) = 0 for u < 0 (causality).

Note that ifw is mixing for (O, 7) thenlim;_, . (Aw)*~*(X) = 0 foranyV € C(R, Osqi) of compact support
and anyX € O, i.e., the system recovers from infinitesimal localizedymrations. We refer to [VW] for further
connections between the mixing property and linear resptreory.

ForV € Dom(¢), Equ. (1) can be rewritten as

(K)V)(A) = (T*(A[C(V))w-

This is a typical fluctuation-dissipation relation: On te& hand side the response functiSrescribes dissipation,
the correlation function on the right hand side measuresuidtions.

For later reference let us consider the special case whesé¢r, 3)-KMS andV (t) = — >, X;(t)A;. There
the A; € Oy N Dom(d) describe the coupling of the system to external fields andXhg) are the time-
dependent field strengths. One ffas: —3¢ and the observabl®; = 6(A,) describes the flux conjugate ;.
The linear response is given by the finite time Green-Kubmida

(80)* () = 36 [ (7 (A)05). X () du @

1.2 Thermal drive

To discuss thermal forcing we need more structure. We cengfte setting of [NESS in quantum statistical
mechanics]: A small systerfi, described by(Oy, 7o) coupled to infinite reservoir®,, ..., R described by
(O, 75), with 1 < j < M. The algebra factorizes accordingly = ®o<.<m O, and the dynamics of the
decoupled system i§jec = Qo<a<yTa = et%aec \We denote by, the generator of, So thatige. = >0 ba-

The dynamicsr of the coupled system is defined as the local perturbatioryQf by the couplingl’ =
> 1<j<m Vi, whereV; € Og @ O;. Its generator i$ = dgec +i[V, -].

For simplicity we shall only consider here the case wherditheial statev is (7, 5)-KMS, so that the genera-
tor of its modular group is = —(35. We study small departures from this state resulting fropdsed temperature
gradients trough the system. Our discussion can easily ergkzed to include other thermodynamic forces like
inhomogeneous electro-chemical potentials. To start,sgarae the following.

(H1) For all sufficiently smallX = (Xi,..., X)) € RM there exists a unique staxé?) such that
w0y is (10, 8)-KMS andw{’ |0, is (5,5 — X;)-KMS for 1 < j < M.

Such a state correspond to each reserfgitbeing at equilibrium at inverse temperatite= 8 — X;. The
X’s are the thermodynamic forces which drive the system oatiaflibrium (see [Nonequilibrium steady states]).
The conjugate fluxes are the energy currd@nts= ¢, (V) (see [Entropy production]). To ensure that they are well
defined we assume

(H2) V € Dom(6;) for1 < j < M.

It follows from Araki’s perturbation theory (see [KMS sta})athatwgg)zo (which is the uniquéryec, 5)-KMS

state) andv are mutually normal. We note however that siaég)zo # w, expandingjgg) o7!(A) —w(A) around
X = 0 generates a spurious zeroth-order term. To avoid this @nolote shall construct a family of states

which on the one hand has the same thermodynamic propesﬁég)aand on the other hand satisfieg—g = w.



By definition, the modular group mﬁé?) is generated by-304cc + Zl<j<M X;é;. Denote byo x the group
of x-automorphisms generated by T

M
CX = 765(190 + Z Xj(gj - 15[‘/, ] = C + ZXJ(SJ
Jj=1

1<j<M

Araki’s perturbation theory implies that there exists aquii(o x, —1)-KMS statewx such tha'wgg) andwy are
mutually normal. Thus, these two states have the same tligmmamic properties and sin€g.—y = ¢ one also
haSwX:() = w.

We say thatd € O is centered ifux (A) = 0 for all sufficiently smallX € R™. The following result has been
proven in [JOP1]

Theorem 1 Under the Hypothesis (H1) and (H2), the functi&n— wx o 7¢(A) is differentiable atX = 0 for
any centered observablé € O and the finite time Green-Kubo formula

t
dx,wx o 7 (A) x_o = /0 (7)) ;). ds, 3)

holds.

Remarks. 1. Formula (3) is limited to centered observables becausbkeaurrent level of generality, there is no
way to control the behavior @by (A) asX — 0. If A € O is such thatX — wx (A) is differentiable atX = 0
then the above formula still holds after addition of theistabntributiondx, wx (A)|x—o to its right hand side.
We note however that for infinite systems the statgsfor distinct values ofX are usually mutually singular. The
differentiability ofwx (A) is therefore a delicate question and is not expected to laolgeneral observables.

2. One can prove that the energy fluesand more generally the fluxes conjugate to intensive theymeaic
parameters are centered. We refer to [JOP1] for more details

2 Thelongtime problem

The hard problem of linear response theory concerns thdityabf the linear response formulas derived in the
previous section in the long time limit. This delicate gimshas been largely discussed in the physics literature.
The most famous objection to the validity of linear respowss raised by van Kampen in [VK]. The basis of
his argumentation is the fact that the microscopic dynamiceslarge system, with many degrees of freedom, is
strongly chaotic. He infers that the time scale on which aypkative calculation remains valid can be very short.
He concludes that the finite time linear response may welHysipally irrelevant on a macroscopic time scale. A
discussion of van Kampen'’s objection can be found in [KTHjeTnterested reader should also consult [L].

A mathematical idealization reduces the long time problerté interchange of two limits: The zero forcing
limit involved in the derivation of the finite time linear ©@@nse formulas and the infinite time limit. To illustrate
this point let us continue the discussion of Subsection hiziied us to Formula (3), assuming:

(H3) For all sufficiently smallX € RY there exists a NESSx . (see [NESS in quantum statistical
mechanics]) such that,
lim wx o 7(A) = wxy (A), (4)

t—o0
forany A € O.

Incidently we note that under such circumstances one expeate, namely that

lim 70 7%(4) = wx+(4),

t—o0



holds for anyA € O and anywx-normal (or equivalently;ﬁ?)-normal) state.
We shall say that the observablec O is regular if the functionX — wx (A) is differentiable afX = 0 and

Ox,wx+(A)lx=0 = lim Ox,wx o 7'(A)|x=0.

If Ais aregular, centered observable Equ. (4) and Formula €8] the Green-Kubo formula

aXf%XNA)X—oZLAQYT%Aﬂ@ﬁwd& (5)

In particular, if the fluxe®, are regular, then the transport coefficients (see [Nonikquim steady states]) defined
by
wx(®k) = D LiX;+o(X),
1<j<M

are given by the formula
L= [ (@00} ds

0
To justify the exchange of limits for a sufficiently large sétcentered observables € O, in particular for

the flux observables, is a delicate problem requiring ayfgidod control on the dynamics of the system. This was
recently achieved for two classes of system&levels systems coupled to free Fermi reservoirs in [JORE] a
locally interacting Fermi gases in[JOP3]. In the first cdseNESS was previously constructed in [JP] using the
Liouvillean approach (see [NESS in quantum statisticallmeis]). In the second case, the NESS is obtained
following Ruelle’s scattering approach. In both casesiriterchange of limits is validated via the following simple
consequence of Vitali's theorem.

Proposition 2 Suppose that (H1) and (H3) hold and léte O. Assume that for some> 0 and anyt > 0, the
functionX — wx o 7/(A) has an analytic extension to the open polyditk= {X € CM | max; |X;| < €}. If

sup  fwx o 7(A)] < oc,
XED.,t>0

holds thenA is regular.

It is evident but sometimes overlooked that the long timebjgnm can not be solved by proving that a finite
time linear response formula continues to make sense imtigetime limit. Suppose for example that the system
(0, 7) is L*-asymptotically Abelian, that is

fﬂmwwwa<m

forany A,B € O. It follows that the linear response to the perturbatioft) = — >, X;(¢)A; such that
z =) sup, | X;(t)] < oo satisfies
(Aw)'(4) = Tim (Aw)~'(4) = / W(i[Aj, 7 (A)]) X (¢ — ) du, ©)
§——00 - 0
J

where the integrals are absolutely convergent. This homaaves not mean that this formula is applicable, i.e., that
(i) the natural nonequilibrium state
w) (A) = lim wo 5t (A),
exists and (i) that
wl (A) —w(A) = (Aw)'(A) + o(z).



In fact both (i) and (ii) require a precise control of the pebed dynamicsy whereas Equ. (6) only involves the
unperturbed-. If (i) and (ii) hold and ifw is (7, 3)-KMS then, by Equ. (2), the infinite time Green-Kubo formula

@B (4) =308 [l X0 - 5) s,

hold.

3 Timereversal invariance and Onsager reciprocity relations

A time reversal of O, 7) is an involutive, antilineak-automorphisn® of O such thatr! c © = © o 7~¢ for any
t € R. A stater on O is time reversal invariant i o ©(A) = v(A*) for all A € O. An observabled € Ogs is
even/odd under time reversal whene@gd) = +A.

The following proposition is a simple consequence of the Kdd8dition (see [JOP1]).

Proposition 3 Assume thatO, ) is equipped with a time revers@l. Letw be a time reversal invariant, mixing
(1, 8)-KMS state. IfA, B € O4.i¢ are both even or odd under time reversal then

/O(TS(A)|B>wds:%[tw(ATS(B))ds+o(1),

in the limitt — oo.

Remark. If w is the uniqugT, 5)-KMS state then it is automatically time reversal invariant

To apply this proposition to the Green-Kubo formula (5) wsuase:

(H4) (O, 1) is equipped with a time revers@l andw is a time reversal invariant, mixing-, 5)-KMS
state. Moreover, the couplirig; are even under time reversal.

Corollary 4 Under Hypothesis (H1), (H2), (H3) and (H4) the Green-Kubarfola (5) can be written as

1 [ .
B, wx - (A) x—0 = 5/ W(ATS(®,)) ds,
— 00
for regular, centered observables € O, which are odd under time reversal. In particular, if the flaxig, are
regular then the transport coefficients are given by
1 o0

L, = 5[ w(®pT*(P;)) ds. (7

If wis a mixing(r, 5)-KMS state then the stability condition

/ W([A,7(B)])dt = 0
holds for anyA, B € O (see [Stability and passivity of quantum states] or [BR2J).important consequence of
this fact and Equ. (7) is

Corollary 5 Under the assumptions of Corollary 4 the transport coeffitsesatisfy the Onsager reciprocity rela-
tions
Lji, = Li;.
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