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Linear response theory is a special instance of first order perturbation theory. Its purpose is to describe the
response of a mechanical system to external forces in the regime of weak forcing. Of particular interest is the
response of systems which are driven out of some dynamical equilibrium by non-conservative mechanical forces
or thermal forces like temperature or density gradients. This article is a short introduction to some mathematical
results in quantum mechanical linear response theory. We refer to [KTH] for an introduction to the physical aspects
of the subject.

1 Finite time linear response

The first problem of linear response theory is the determination of the response of the system to the action of the
driving forces over a finite interval of time. We shall consider separately the simple case of mechanical forcing and
the more delicate thermal drives.

The unperturbed system is aC∗- or W ∗-dynamicalsystem(O, τ) equipped with amodular invariant stateω.
We denote byδ the generator of the dynamicsτ , by σ the modular group ofω and byζ its generator.Oself further
denotes the set of selfadjoint elements ofO. We note that the important role of the modular structure in linear
response theory was already apparent in [NVW].

Sinceω is (σ,−1)-KMS, for anyA,B ∈ O there exists a functionF (A,B; z) which is analytic in the strip
{z | − 1 < Im z < 0}, bounded and continuous on its closure and such thatF (A,B; θ) = ω(Aσθ(B)) and
F (A,B; θ − i) = ω(σθ(B)A) for θ ∈ R. We shall abuse notation and denoteF (A,B; z) by eitherω(Aσz(B)) or
ω(σ−z(A)B) for −1 ≤ Im z ≤ 0. In particular, the canonical correlation ofA,B ∈ O is defined by

〈A|B〉ω =

∫ 1

0

ω(Aσ−iθ
ω (B)) dθ =

∫ 1

0

F (A,B;−iθ) dθ.

One easily checks that it defines an inner product on the real vector spaceOself (see [NVW]).

1.1 Mechanical drive

Let τs→t
V be the dynamics onO generated byδ + i[V (t), · ], i.e., the solution of

∂tτ
s→t
V (A) = τ s→t

V (δ(A) + i[V (t), A]), ∂sτ
s→t
V (A) = δ(τ s→t

V (A)) + i[V (s), (τ s→t
V (A)]),

which satisfiesτs→t
V (A) = A for s = t. For simplicity, we assume thatt 7→ V (t) belongs toC(R,Oself). Standard

time-dependent perturbation theory yields (see [Quantum dynamical systems])

τs→t
V (A) = τ t−s(A) +

∫ t

s

i[τu−s(V (u)), τ t−u(A)] du + higher order terms.

Thus, to first order in the perturbationV , the changeω ◦ τ s→t
V − ω is given by

(∆ω)s→t =

∫ t

s

K(t − u)V (u) du.
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The operator valued response functionK(u) : O → O#, whereO# denotes the dual ofO, is defined by

(K(u)V )(A) = ω(i[V, τu(A)]), (1)

for u ≥ 0 andK(u) = 0 for u < 0 (causality).
Note that ifω is mixing for (O, τ) thenlimt→∞(∆ω)s→t(X) = 0 for anyV ∈ C(R,Oself) of compact support

and anyX ∈ O, i.e., the system recovers from infinitesimal localized perturbations. We refer to [VW] for further
connections between the mixing property and linear response theory.

ForV ∈ Dom(ζ), Equ. (1) can be rewritten as

(K(u)V )(A) = 〈τu(A)|ζ(V )〉ω.

This is a typical fluctuation-dissipation relation: On the left hand side the response functionK describes dissipation,
the correlation function on the right hand side measures fluctuations.

For later reference let us consider the special case whereω is (τ, β)-KMS andV (t) = −
∑

j Xj(t)Aj . There
the Aj ∈ Oself ∩ Dom(δ) describe the coupling of the system to external fields and theXj(t) are the time-
dependent field strengths. One hasζ = −βδ and the observableΦj = δ(Aj) describes the flux conjugate toAj .
The linear response is given by the finite time Green-Kubo formula

(∆ω)s→t(A) =
∑

j

β

∫ t

s

〈τ t−u(A)|Φj〉ω Xj(u) du. (2)

1.2 Thermal drive

To discuss thermal forcing we need more structure. We consider the setting of [NESS in quantum statistical
mechanics]: A small systemS, described by(O0, τ0) coupled to infinite reservoirsR1, . . . ,RM described by
(Oj , τj), with 1 ≤ j ≤ M . The algebra factorizes accordinglyO = ⊗0≤a≤MOa and the dynamics of the
decoupled system isτdec = ⊗0≤a≤Mτa = etδdec . We denote byδa the generator ofτa so thatδdec =

∑
a δa.

The dynamicsτ of the coupled system is defined as the local perturbation ofτdec by the couplingV =∑
1≤j≤M Vj , whereVj ∈ O0 ⊗Oj . Its generator isδ = δdec + i[V, · ].
For simplicity we shall only consider here the case where thefiducial stateω is (τ, β)-KMS, so that the genera-

tor of its modular group isζ = −βδ. We study small departures from this state resulting from imposed temperature
gradients trough the system. Our discussion can easily be generalized to include other thermodynamic forces like
inhomogeneous electro-chemical potentials. To start, we assume the following.

(H1) For all sufficiently smallX = (X1, . . . ,XM ) ∈ R
M there exists a unique stateω(0)

X such that

ω
(0)
X |O0

is (τ0, β)-KMS andω
(0)
X |Oj

is (τj , β − Xj)-KMS for 1 ≤ j ≤ M .

Such a state correspond to each reservoirRj being at equilibrium at inverse temperatureβj = β − Xj . The
Xj ’s are the thermodynamic forces which drive the system out ofequilibrium (see [Nonequilibrium steady states]).
The conjugate fluxes are the energy currentsΦj = δj(V ) (see [Entropy production]). To ensure that they are well
defined we assume

(H2) V ∈ Dom(δj) for 1 ≤ j ≤ M .

It follows from Araki’s perturbation theory (see [KMS states]) thatω(0)
X=0 (which is the unique(τdec, β)-KMS

state) andω are mutually normal. We note however that sinceω
(0)
X=0 6= ω, expandingω(0)

X ◦ τ t(A)− ω(A) around
X = 0 generates a spurious zeroth-order term. To avoid this problem we shall construct a family of statesωX

which on the one hand has the same thermodynamic properties asω
(0)
X and on the other hand satisfiesωX=0 = ω.
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By definition, the modular group ofω(0)
X is generated by−βδdec +

∑
1≤j≤M Xjδj . Denote byσX the group

of ∗-automorphisms generated by

ζX = −βδdec +
∑

1≤j≤M

Xjδj − iβ[V, · ] = ζ +

M∑
j=1

Xjδj .

Araki’s perturbation theory implies that there exists a unique(σX ,−1)-KMS stateωX such thatω(0)
X andωX are

mutually normal. Thus, these two states have the same thermodynamic properties and sinceζX=0 = ζ one also
hasωX=0 = ω.

We say thatA ∈ O is centered ifωX(A) = 0 for all sufficiently smallX ∈ R
n. The following result has been

proven in [JOP1]

Theorem 1 Under the Hypothesis (H1) and (H2), the functionX 7→ ωX ◦ τ t(A) is differentiable atX = 0 for
any centered observableA ∈ O and the finite time Green-Kubo formula

∂Xj
ωX ◦ τ t(A)|X=0 =

∫ t

0

〈τs(A)|Φj〉ω ds, (3)

holds.

Remarks. 1. Formula (3) is limited to centered observables because, at the current level of generality, there is no
way to control the behavior ofωX(A) asX → 0. If A ∈ O is such thatX 7→ ωX(A) is differentiable atX = 0
then the above formula still holds after addition of the static contribution∂Xk

ωX(A)|X=0 to its right hand side.
We note however that for infinite systems the statesωX for distinct values ofX are usually mutually singular. The
differentiability ofωX(A) is therefore a delicate question and is not expected to hold for general observablesA.

2. One can prove that the energy fluxesΦj and more generally the fluxes conjugate to intensive thermodynamic
parameters are centered. We refer to [JOP1] for more details.

2 The long time problem

The hard problem of linear response theory concerns the validity of the linear response formulas derived in the
previous section in the long time limit. This delicate question has been largely discussed in the physics literature.
The most famous objection to the validity of linear responsewas raised by van Kampen in [VK]. The basis of
his argumentation is the fact that the microscopic dynamicsof a large system, with many degrees of freedom, is
strongly chaotic. He infers that the time scale on which a perturbative calculation remains valid can be very short.
He concludes that the finite time linear response may well be physically irrelevant on a macroscopic time scale. A
discussion of van Kampen’s objection can be found in [KTH]. The interested reader should also consult [L].

A mathematical idealization reduces the long time problem to the interchange of two limits: The zero forcing
limit involved in the derivation of the finite time linear response formulas and the infinite time limit. To illustrate
this point let us continue the discussion of Subsection 1.2 which led us to Formula (3), assuming:

(H3) For all sufficiently smallX ∈ R
M there exists a NESSωX+ (see [NESS in quantum statistical

mechanics]) such that,
lim

t→∞
ωX ◦ τ t(A) = ωX+(A), (4)

for anyA ∈ O.

Incidently we note that under such circumstances one expects more, namely that

lim
t→∞

η ◦ τ t(A) = ωX+(A),

3



holds for anyA ∈ O and anyωX -normal (or equivalentlyω(0)
X -normal) stateη.

We shall say that the observableA ∈ O is regular if the functionX 7→ ωX+(A) is differentiable atX = 0 and

∂Xk
ωX+(A)|X=0 = lim

t→∞
∂Xk

ωX ◦ τ t(A)|X=0.

If A is a regular, centered observable Equ. (4) and Formula (3) yield the Green-Kubo formula

∂Xj
ωX+(A)|X=0 =

∫ ∞

0

〈τs(A)|Φj〉ω ds. (5)

In particular, if the fluxesΦk are regular, then the transport coefficients (see [Nonequilibrium steady states]) defined
by

ωX+(Φk) =
∑

1≤j≤M

LjkXj + o(X),

are given by the formula

Ljk =

∫ ∞

0

〈τs(Φk)|Φj〉ω ds.

To justify the exchange of limits for a sufficiently large setof centered observablesA ∈ O, in particular for
the flux observables, is a delicate problem requiring a fairly good control on the dynamics of the system. This was
recently achieved for two classes of systems:N -levels systems coupled to free Fermi reservoirs in [JOP2] and
locally interacting Fermi gases in[JOP3]. In the first case the NESS was previously constructed in [JP] using the
Liouvillean approach (see [NESS in quantum statistical mechanics]). In the second case, the NESS is obtained
following Ruelle’s scattering approach. In both cases, theinterchange of limits is validated via the following simple
consequence of Vitali’s theorem.

Proposition 2 Suppose that (H1) and (H3) hold and letA ∈ O. Assume that for someǫ > 0 and anyt ≥ 0, the
functionX 7→ ωX ◦ τ t(A) has an analytic extension to the open polydiskDǫ = {X ∈ C

M | maxj |Xj | < ǫ}. If

sup
X∈Dǫ,t≥0

|ωX ◦ τ t(A)| < ∞,

holds thenA is regular.

It is evident but sometimes overlooked that the long time problem can not be solved by proving that a finite
time linear response formula continues to make sense in the long time limit. Suppose for example that the system
(O, τ) is L1-asymptotically Abelian, that is

∫ ∞

0

‖[A, τ t(B)]‖dt < ∞,

for any A,B ∈ O. It follows that the linear response to the perturbationV (t) = −
∑

j Xj(t)Aj such that
x =

∑
j supt |Xj(t)| < ∞ satisfies

(∆ω)t(A) = lim
s→−∞

(∆ω)s→t(A) =
∑

j

∫ ∞

0

ω(i[Aj , τ
u(A)])Xj(t − u) du, (6)

where the integrals are absolutely convergent. This however does not mean that this formula is applicable, i.e., that
(i) the natural nonequilibrium state

ωV
t (A) = lim

s→−∞
ω ◦ τ s→t

V (A),

exists and (ii) that
ωV

t (A) − ω(A) = (∆ω)t(A) + o(x).
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In fact both (i) and (ii) require a precise control of the perturbed dynamicsτV whereas Equ. (6) only involves the
unperturbedτ . If (i) and (ii) hold and ifω is (τ, β)-KMS then, by Equ. (2), the infinite time Green-Kubo formula

(∆ω)t(A) =
∑

j

β

∫ ∞

0

〈τs(A)|Φj〉ω Xj(t − s) ds,

hold.

3 Time reversal invariance and Onsager reciprocity relations

A time reversal of(O, τ) is an involutive, antilinear∗-automorphismΘ of O such thatτ t ◦ Θ = Θ ◦ τ−t for any
t ∈ R. A stateν onO is time reversal invariant ifν ◦ Θ(A) = ν(A∗) for all A ∈ O. An observableA ∈ Oself is
even/odd under time reversal wheneverΘ(A) = ±A.

The following proposition is a simple consequence of the KMScondition (see [JOP1]).

Proposition 3 Assume that(O, τ) is equipped with a time reversalΘ. Letω be a time reversal invariant, mixing
(τ, β)-KMS state. IfA,B ∈ Oself are both even or odd under time reversal then

∫ t

0

〈τs(A)|B〉ω ds =
1

2

∫ t

−t

ω(Aτ s(B)) ds + o(1),

in the limit t → ∞.

Remark. If ω is the unique(τ, β)-KMS state then it is automatically time reversal invariant.

To apply this proposition to the Green-Kubo formula (5) we assume:

(H4) (O, τ) is equipped with a time reversalΘ andω is a time reversal invariant, mixing(τ, β)-KMS
state. Moreover, the couplingVj are even under time reversal.

Corollary 4 Under Hypothesis (H1), (H2), (H3) and (H4) the Green-Kubo formula (5) can be written as

∂Xj
ωX+(A)|X=0 =

1

2

∫ ∞

−∞

ω(Aτs(Φj)) ds,

for regular, centered observablesA ∈ Oself which are odd under time reversal. In particular, if the fluxes Φk are
regular then the transport coefficients are given by

Ljk =
1

2

∫ ∞

−∞

ω(Φkτs(Φj)) ds. (7)

If ω is a mixing(τ, β)-KMS state then the stability condition
∫ ∞

−∞

ω([A, τ t(B)]) dt = 0

holds for anyA,B ∈ O (see [Stability and passivity of quantum states] or [BR2]).An important consequence of
this fact and Equ. (7) is

Corollary 5 Under the assumptions of Corollary 4 the transport coefficients satisfy the Onsager reciprocity rela-
tions

Ljk = Lkj .

5



References

[BR2] Bratteli, O., Robinson D. W.:Operator Algebras and Quantum Statistical Mechanics 2.Second edition,
Springer, Berlin (2002).

[JOP1] Jakšíc, V., Ogata, Y., Pillet, C.-A.: Linear response theory for thermally driven quantum open systems. J.
Stat. Phys.123, 547 (2006).

[JOP2] Jakšíc, V., Ogata, Y., Pillet, C.-A.: The Green-Kubo formula for the spin-fermion system. Commun. Math.
Phys.268, 369 (2006).

[JOP3] Jakšíc, V., Ogata, Y., Pillet, C.-A.: The green-kubo formula for locally interacting fermionic open systems.
Ann. Henri Ponicaré, In press, (2006).

[JP] Jakšíc, Pillet, C.-A.: Nonequilibrium steady states of finite quantum systems coupled to thermal reservoirs.
Commun. Math. Phys.226, 131 (2002).

[KTH] Kubo, R., Toda, M., Hashitsume, M.: Statistical Physics II. Nonequilibrium Statistical Mechanics.
Springer, Berlin (1985).

[L] Lebowitz, J.: Book review:Statistical physics II: Nonequilibrium statistical mechanics. J. Stat. Phys.44,
697 (1986).

[NVW] Naudts, J., Verbeure, A., Weder, R.: Linear response theory and the KMS condition. Commun. Math.
Phys.44, 87 (1975).

[VK] Van Kampen, N.G.: The case against linear response theory. Phys. Norv.5, 279 (1971).

[VW] Verbeure, A., Weder, R.: Stability in linear response and clustering properties. Commun. Math. Phys.44,
101 (1975).

6


