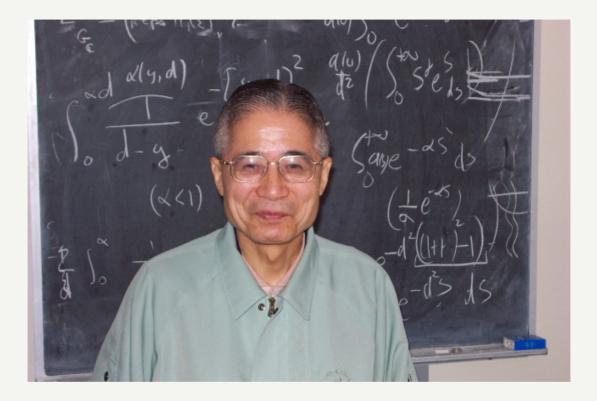
Dynamics of Open Quantum Systems

Vojkan Jakšić (McGill University) Claude-Alain Pillet (Université de Toulon)

Plan

- Introduction: What and why ?
- The two approaches to open systems
- Mathematical framework
- Return to equilibrium
- Non-equilibrium steady states
- Further developments

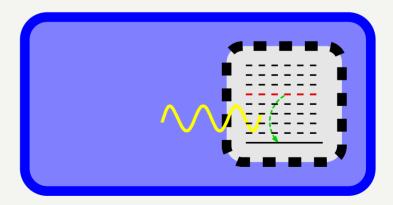


In Memory of Professor Huzihiro Araki 1932-2022

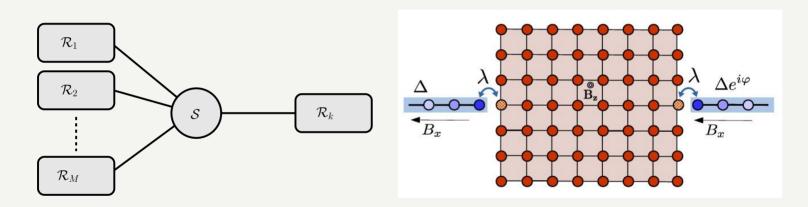
Introduction

What are Open Systems and why are they useful ?

- Physical systems (think of an atom or molecule) are simplest when isolated from external influences \implies closed system.
- In reality, they are rarely isolated, but interact with their environment, and these interactions have important consequences on their properties \implies open systems.



- Open systems are paradigmatic models in non-equilibrium statistical mechanics.
- They allow to implement friction/dissipation in a conservative framework.
- They also provide good models of condensed matter devices .



Gavensky, Usaj, Balseiro PRR (2020)

The two approaches to open systems 6/29

- In the Markovian (phenomenological) approach
 - $\rightarrow~$ the small system ${\cal S}$ is acted upon by
 - a quantum noise,
 - a **dissipative** force (fluctuation-dissipation).
 - $\rightarrow~\mathcal{S}$ evolves as a quantum Markov process.
 - \rightarrow "Integrating" the noise yields a **semigroup** of **completely positive** maps.

The two approaches to open systems 7/29

- In the Markovian (phenomenological) approach
 - $\rightarrow~$ the small system ${\cal S}$ is acted upon by
 - a quantum noise,
 - a **dissipative** force (fluctuation-dissipation).
 - $\rightarrow~\mathcal{S}$ evolves as a quantum Markov process.
 - \rightarrow "Integrating" the noise yields a **semigroup** of **completely positive** maps.
- Long history
 - $\rightarrow\,$ Einstein '17: AB-law of atomic radiation.
 - $\rightarrow~$ Pauli '28: Quantum master equation.
 - \rightarrow van Hove '55: $\lambda^2 t$ -limit.
 - \rightarrow Pullé, Davies '74: Mathematical derivation of master equation from $\lambda^2 t$ -limit.
 - \rightarrow Lebowitz-Spohn '78: Irreversible thermodynamics of weakly coupled systems.
 - \rightarrow Dereziński-De Roeck '08: Extended weak coupling limit.

- In the Hamiltonian (fundamental) approach, the model consists in:
 - \rightarrow Small confined system \mathcal{S} , few degrees of freedom,
 - \rightarrow coupled to $M \ge 1$ large reservoirs $\mathcal{R}_1, \ldots \mathcal{R}_M$.
 - \rightarrow **Closed** joint system $S + R_1 + \cdots + R_M$ evolves with **conservative group** $t \mapsto \tau^t$.
 - \rightarrow **Not** the subsystem S (memory, Nakajima–Zwanzig).

- In the Hamiltonian (fundamental) approach, the model consists in:
 - \rightarrow Small confined system \mathcal{S} , few degrees of freedom,
 - \rightarrow coupled to $M \ge 1$ large reservoirs $\mathcal{R}_1, \ldots \mathcal{R}_M$.
 - \rightarrow **Closed** joint system $S + \mathcal{R}_1 + \cdots + \mathcal{R}_M$ evolves with **conservative group** $t \mapsto \tau^t$.
 - \rightarrow **Not** the subsystem S (memory, Nakajima–Zwanzig).

Reservoirs should be inexhaustible sources/bottomless sinks of energy with good ergodic properties !

 \rightarrow Idealization: reservoirs are **infinitely extended** systems at **positive density**.

• Mathematical description of extended quantum systems at positive density was developed in the 60'-80'.

Mathematical Framework

- Basic QM: von Neumann theorem $i[p, x] = 1 \implies$ Schrödinger $\mathcal{H} = L^2(\mathbb{R})$.
- QFT or QSM: $a(k)a^*(k') \pm a^*(k')a(k) = \delta(k k')$ have uncountably many inequivalent representations
 - \rightarrow A system of fermions/bosons is described by C^*/W^* -algebra \mathcal{O} encoding these (anti)-commutation relations.
 - \rightarrow **Observables** are elements of \mathcal{O} .
 - \rightarrow A QM **state** is a positive normalized linear functional $\omega: \mathcal{O} \rightarrow \mathbb{C}$.
 - \rightarrow The Heisenberg **dynamics** is a group of *-automorphisms $t \mapsto \tau^t = e^{t\delta}$ of \mathcal{O} .
 - \rightarrow A Quantum Dynamical System (QDS) is a triple ($\mathcal{O}, \tau, \omega$).

Mathematical Framework

- Basic QM: von Neumann theorem $i[p, x] = 1 \implies$ Schrödinger $\mathcal{H} = L^2(\mathbb{R})$.
- QFT or QSM: $a(k)a^*(k') \pm a^*(k')a(k) = \delta(k k')$ have uncountably many inequivalent representations
 - → A system of fermions/bosons is described by C^*/W^* -algebra \mathcal{O} encoding these (anti)-commutation relations.
 - \rightarrow **Observables** are elements of \mathcal{O} .
 - \rightarrow A QM **state** is a positive normalized linear functional $\omega: \mathcal{O} \rightarrow \mathbb{C}$.
 - \rightarrow The Heisenberg **dynamics** is a group of *-automorphisms $t \mapsto \tau^t = e^{t\delta}$ of \mathcal{O} .
 - \rightarrow A Quantum Dynamical System (QDS) is a triple ($\mathcal{O}, \tau, \omega$).
- The GNS construction puts $(\mathcal{O}, \tau, \omega)$ in a Hilbertian context $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega}, L)$

$$\omega(A) = \langle \Omega_{\omega}, \pi_{\omega}(A) \Omega_{\omega} \rangle, \qquad \pi_{\omega}(\tau^t(A)) = e^{itL} \pi_{\omega}(A) e^{-itL}, \qquad L\Omega_{\omega} = 0$$

L is the **Liouvillean**, \mathcal{N}_{ω} = set of states given by density matrices on \mathcal{H}_{ω} the folium.

• β -Thermal QDS: ω is equilibrium states for τ at inverse temperature β (characterized by the KMS condition).

The Modular structure

- The GNS representation of thermal QDS carries a rich mathematical structure which is the object of modular theory.
- First appeared in the QDS describing ideal Bose and Fermi gases in thermal equilibrium. GNS constructed in '63 by Araki and Woods, and Araki and Wyss.
- In a '67 paper, Haag, Hugenholtz and Winnink realized that this structure was more generally associated to the KMS condition.
- In a '67 unpublished note, Tomita introduced the modular operator and proved the main theorems of what is now known as Modular Theory or Tomita-Takesaki Theory. The first published account on it is Takesaki's LNM of '70.

The Modular structure

- Modular Theory is a main tool in the classification of type III factors by Connes in '73 (Fields Medal '82).
- It played an essential role in the major developments of equilibrium quantum statistical mechanics in the 70', 2 volumes monograph by Bratteli and Robinson.
- It plays a fundamenal role in Algebraic QFT.
- It is also central to more recent developments in non-equilibrium statistical mechanics...
- ... and very recent advances on entanglement in quantum field theory: Witten '18, Hollands-Sanders '18.

Return to Equilibrium: Robinson 1973 14/29

- S small system $(\mathcal{O}_S, \tau_S, \omega_S)$.
- \mathcal{R} large reservoir in a β -thermal state $(\mathcal{O}_{\mathcal{R}}, \tau_{\mathcal{R}}, \omega_{\mathcal{R}})$.
- Joint but decoupled system S + R described by (O, τ, ω) where

$$\mathcal{O} = \mathcal{O}_{\mathcal{S}} \otimes \mathcal{O}_{\mathcal{R}}, \qquad \tau^t = \tau^t_{\mathcal{S}} \otimes \tau^t_{\mathcal{R}} = e^{t(\delta_{\mathcal{S}} + \delta_{\mathcal{R}})}, \qquad \omega = \omega_{\mathcal{S}} \otimes \omega_{\mathcal{R}}.$$

• Coupled system described by locally perturbed QDS $(\mathcal{O}, \tau_V, \omega)$ where

$$au_V^t = e^{t(\delta_S + \delta_R + i[V, \cdot])}, \qquad V \, \tilde{\in} \, \mathcal{O}.$$

- Araki's perturbation theory (and extension by Dereziński-J-P '03)
 - $\rightarrow \tau_V$ has a unique β -thermal state $\omega_V \in \mathcal{N}_{\omega}$.
 - $\rightarrow \quad (\mathcal{O},\tau_V,\omega_V) \rightsquigarrow (\mathcal{H}_{\omega},\pi_{\omega},\Omega_{\omega_V},L_V) \text{ with } \Omega_{\omega_V} \propto e^{-\beta(L+V)/2} \Omega_{\omega}, \ L_V = L + V JVJ$

Return to Equilibrium: Robinson 1973 15/29

The Problem: Does the QDS $(\mathcal{O}, \tau_V, \omega)$ return to equilibrium

 $\lim_{t o\infty}
u\circ au_V^t(A)\,{=}\,\omega_V(A),$

for all $\nu \in \mathcal{N}_{\omega}$ and all $A \in \mathcal{O}$?

- \neq Approach to equilibrium (0th Law).
- Robinson '73: under strong asymptotic abelianness condition (scattering approach).
- Spohn '77: algebraic condition for Markovian dynamics (weak coupling limit).
- Maassen '84: Return to equilibrium for quantum Langevin equation.

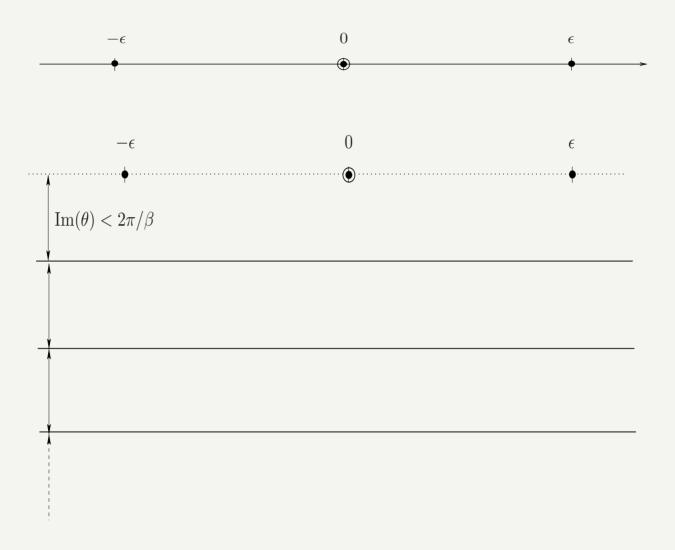
• J-P '96: S coupled to scalar boson field, based on the following circle of ideas from classical dynamical systems:

(a) Koopmanism. We proved the following consequence of modular structure: Return to equilibrium holds if the locally perturbed Liouvillean L_V has purely a.c. spectrum, except for a simple eigenvalue 0.

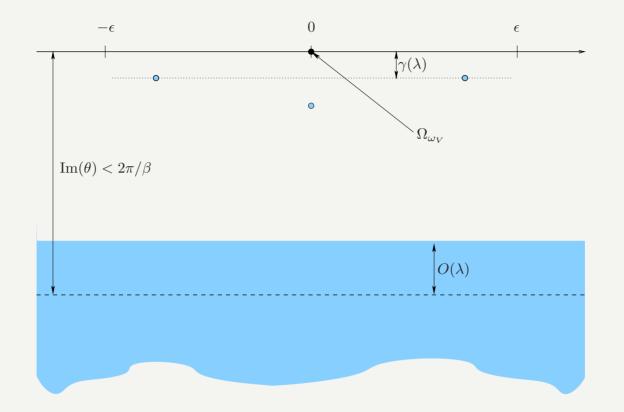
(b) **Spectral deformation.** Introduced in QM by Aguilar-Combes '71 using the dilation group in \mathbb{R}^d .

From a dynamical perspective similar to analysis of Ruelle-Perron-Frobenius transfer operator: essential spectrum depends on the function space on which it acts. Proper choice of this space reveals Ruelle resonances which govern the decay of correlations.

J-P '96: Spectral picture of the Liouvillean for 2-level atom coupled to a β -thermal field



J-P '96: Spectral picture of the Liouvillean for 2-level atom coupled to a β -thermal field

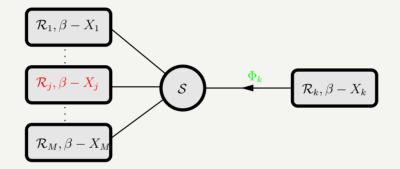


Inverse Laplace transform \implies return to equilibrium at exponential rate $\gamma(\lambda) = O(\lambda^2)$ for $0 < \lambda < \ell(\beta)$

- Dümcke-Spohn '79, J-P '97, Dereziński-Früboes '05, Dereziński-J '12: To 2nd order perturbation theory, resonances lead to the Davies generator.
- Bach-Fröhlich-Sigal '99: Related approaches using dilation analyticity and iteration of Feshbach map, λ small uniformly in temperature.
- Fidaleo-Liverani '99: Ergodic properties for a quantum nonlinear dynamics.
- Merkli '01: Virial theorem approach.
- Dereziński-J '03: Mourre theory approach, λ small uniformly in temperature.
- De Roeck-Kupiainen '11: Powerful result using cluster expansion.

Non-equilibrium Steady States

A physically different picture arises when the environment consists in several parts $\mathcal{R}_1, \ldots, \mathcal{R}_M$ (reservoirs or heat baths) with different intensive thermodynamic parameters.



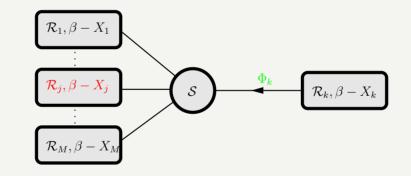
It is then expected that the joint system relaxes to a Non-Equilibrium Steady State (NESS) ω_+ carrying energy currents Φ_k .

From the mathematical perspective the main difficulty is the fact that, unlike the thermal state, this NESS is unknown! Moreover, one expects that $\omega_{+} \notin \mathcal{N}_{\omega}$.

The 1st Law

- Let $\tau^t_{\mathcal{R}_k} = e^{t\delta_k}$
- Heat flux out the reservoir \mathcal{R}_k (=injected power)

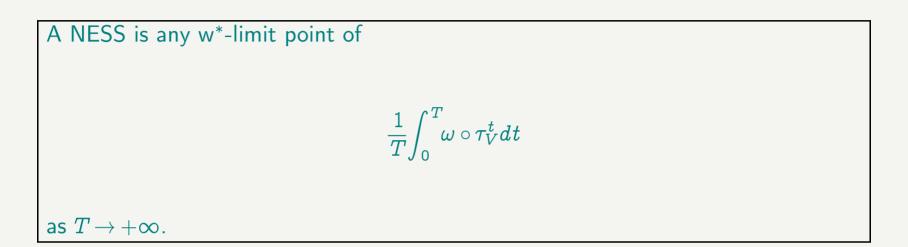
$$\Phi_k = \delta_k(V)$$



• The first Law: for any τ_V -invariant state ν

$$\sum_{k=1}^M
u(\Phi_k) = 0.$$

Ruelle's definition (Rutgers lecture notes 1999-2000)



The set $\tau_V^+(\omega)$ of NESSs is non-empty, and consists of τ_V -invariant states.

Entropy production and the 2nd Law

- Relative entropy of 2 density matrices $\operatorname{Ent}(\mu|\nu) = \operatorname{tr}(\mu(\log \nu \log \mu)) \leq 0.$
- Generalized by Araki to states $\mu, \nu \in \mathcal{N}_{\omega}$, using modular theory.
- $\operatorname{Ent}(\mu|\nu) = 0$ iff $\mu = \nu$.
- Entropy balance relation J-P '01 (consequence of Araki's perturbation theory)

• Assuming $\omega_+ \in \tau_V^+(\nu)$, one has, for a sequence $T_n \to \infty$

$$\omega_+(\sigma) = -\lim_{n o \infty} rac{1}{T_n} \operatorname{Ent}(
u \circ au_V^{T_n} | \omega) \geqslant 0.$$

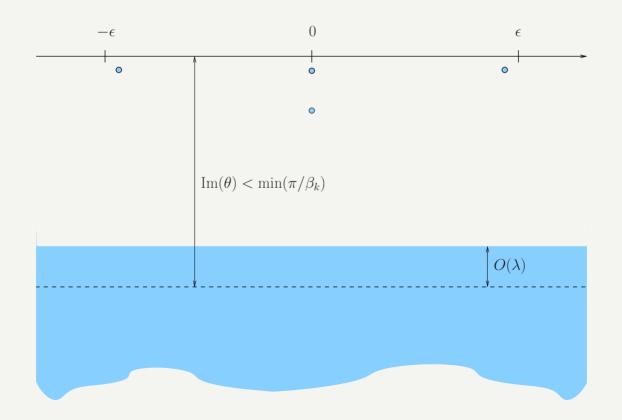
which expresses the 2nd Law (phenomenologic non-equilibrium thermodynamics)

$$\sum_{k=1}^M X_k \omega_+(\Phi_k) \geqslant 0, \qquad X_k = eta - eta_k.$$

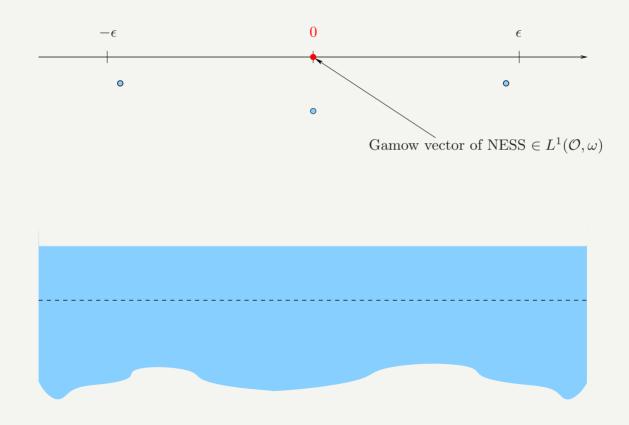
- Related results by Ojima-Hasegawa-Ichiyanagi '88 and Ruelle '01.
- On physical ground, we expect strict inequality ω₊(σ) > 0 to be the signature of non-equilibrium. Structural theory then implies ω₊ ∉ N_ω.

Spectral theory of NESS (J-P '02)

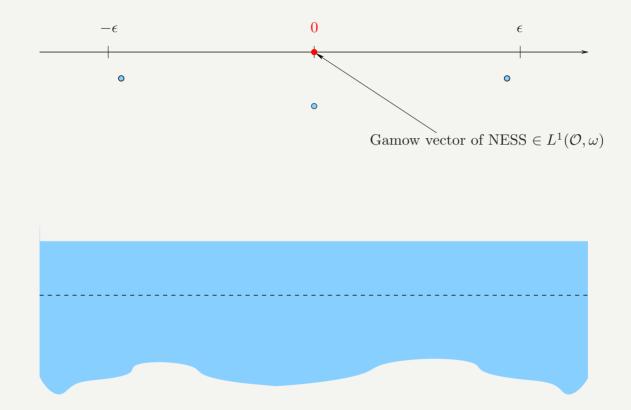
Spectral structure of Liouvillean L_V of the non-equilibrium spin-fermion model



- The Liouvillean L_V acts on the Hilbert space \mathcal{H}_{ω} .
- Araki-Masuda defined a family of Banach space $L^p(\mathcal{O}, \omega), p \in [1, \infty], L^2(\mathcal{O}, \omega) = \mathcal{H}_{\omega}$.
- J-P '02, dynamics is implemented isometrically on $L^p(\mathcal{O}, \omega)$ by L^p -Liouvilleans.
- Spectral structure of L^1 -Liouvillean of the non-equilibrium spin-fermion model



Spectral structure of L^1 -Liouvillean of the non-equilibrium spin-fermion model



- Alternative scattering approach: (Hepp '72, Robinson '73, Botvich-Malyshev '83) Araki-Ho '00, Fröhlich-Merkli-Ueltschi '03, Aschbacher-P '03.
- Merkli-Mück-Sigal '07: bosonic reservoirs.

Some Further Developments

- J-Ogata-P '06-07: Linear response, Green-Kubo formula and Onsager reciprocity relations.
- Aschbacher-J-Pautrat-P '07: Landauer-Büttiker formalism.
- J-P '07: Strict positivity of entropy production
- J-Ogata-P-Seiringer '12: Entropy production and quantum hypothesis testing of the Arrow of Time.
- J-P '14: Quantum Landauer principle.
- Bruneau-J-Last-P '16: Schrödinger conjecture, Landauer-Büttiker and Thouless conductances and entropy production.
- Benoist-Cuneo-J-Pautrat-P '18-21: Entropy production of repeated quantum measurements.
- Benoist-Bruneau-J-Panati-P '24: Entropic fluctuations in quantum statistical mechanics.

Reviews

- J-P '97: Spectral theory of thermal relaxation
- J-P '02: Mathematical theory of non-equilibrium quantum statistical mechanics
- Aschbacher-J-Pautrat-P '06: Topics in non-equilibrium quantum statistical mechanics
- J-Kritchevski-P '06: Mathematical theory of the Wigner-Weisskopf atom
- J-Ogata-Pautrat-P '10: Entropic fluctuations in quantum statistical mechanics. An introduction
- J-P-Westrich '14: Entropic fluctuations of quantum dynamical semigroups