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What are Open Systems and why are they useful ?

e Physical systems (think of an atom or molecule) are simplest when isolated from
external influences — closed system.

e In reality, they are rarely isolated, but interact with their environment, and these
interactions have important consequences on their properties — open systems.




e Open systems are paradigmatic models in non-equilibrium statistical mechanics.
e They allow to implement friction/dissipation in a conservative framework.

e They also provide good models of condensed matter devices .

Gavensky, Usaj, Balseiro PRR (2020)



The two approaches to open systems o

e In the Markovian (phenomenological) approach
— the small system S is acted upon by
— a quantum noise,
— a dissipative force (fluctuation—dissipation).

— &S evolves as a quantum Markov process.

— "Integrating”’ the noise yields a semigroup of completely positive maps.
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— a dissipative force (fluctuation—dissipation).

— &S evolves as a quantum Markov process.
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"Integrating’ the noise yields a semigroup of completely positive maps.

e Long history

Einstein '17: AB-law of atomic radiation.
Pauli '28: Quantum master equation.
van Hove '55: \%t-limit.

Lebowitz-Spohn '78: Irreversible thermodynamics of weakly coupled systems.

L

Derezinski-De Roeck '08: Extended weak coupling limit.



e In the Hamiltonian (fundamental) approach, the model consists in:
— Small confined system S, few degrees of freedom,
— coupled to M >1 large reservoirs R1,...Ru.
— Closed joint system S+ R1+ --- + R evolves with conservative group t+— 7°.

— Not the the subsystem S (memory, Nakajima—Zwanzig).



e In the Hamiltonian (fundamental) approach, the model consists in:
— Small confined system S, few degrees of freedom,
— coupled to M >1 large reservoirs R1,...Ru.
— Closed joint system S+ R1+ --- + R evolves with conservative group t+— 7°.

— Not the the subsystem S (memory, Nakajima—Zwanzig).

Reservoirs should be inexhaustible sources/bottomless sinks of energy

with good ergodic properties !

e Mathematical description of extended quantum systems at positive density was
developed in the 60°-80'.
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e Basic QM: von Neumann theorem i[p, z] =1 = Schrédinger H = L*(RR).

e QFT or QSM: a(k)a*(k") +a*(k")a(k)=46(k — k') have uncountably many inequiv-
alent representations

— A system of fermions/bosons is described by C* /W *-algebra O encoding these
(anti)-commutation relations.

— Observables are elements of O.
— A QM state is a positive normalized linear functional w: O — C.
—  The Heisenberg dynamics is a group of x-automorphisms ¢ — 7t = e of O.

— A Quantum Dynamical System (QDS) is a triple (O, 7,w).
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e Basic QM: von Neumann theorem i[p, z] =1 = Schrédinger H = L*(RR).

e QFT or QSM: a(k)a*(k') +a*(k")a(k)=46(k — k') have uncountably many inequiv-
alent representations

— A system of fermions/bosons is described by C* /W *-algebra O encoding these
(anti)-commutation relations.

— Observables are elements of O.
— A QM state is a positive normalized linear functional w: O — C.
—  The Heisenberg dynamics is a group of x-automorphisms ¢ — 7t = e of O.
— A Quantum Dynamical System (QDS) is a triple (O, 7, w).
e The GNS construction puts (O, 7,w) in a Hilbertian context (H,, 7y, 2w, L)

w(A) = (Qu, Tu(A)W), To(THA)) = etim,(A)e E, LQ,=0.

L is the Liouvillean, N ,= set of states given by density matrices on H,, the folium.

e [3-Thermal QDS: w is equilibrium states for 7 at inverse temperature g (charac-
terized by the KMS condition).



The Modular structure

e The GNS representation of thermal QDS carries a rich mathematical structure
which is the object of modular theory.

e First appeared in the QDS describing ideal Bose and Fermi gases in thermal equi-
librium. GNS constructed in '63 by Araki and Woods, and Araki and Wyss.

e Ina 67 paper, Haag, Hugenholtz and Winnink realized that this structure was more
generally associated to the KMS condition.

e In a '67 unpublished note, Tomita introduced the modular operator and proved
the main theorems of what is now known as Modular Theory or Tomita-Takesaki
Theory. The first published account on it is Takesaki's LNM of '70.



The Modular structure

e Modular Theory is a main tool in the classification of type Il factors by Connes
in '73 (Fields Medal '82).

e It played an essential role in the major developments of equilibrium quantum sta-
tistical mechanics in the 70°, 2 volumes monograph by Bratteli and Robinson.

e It plays a fundamenal role in Algebraic QFT.

e It is also central to more recent developments in statistical
mechanics. ..
e ... and very recent advances on entanglement in quantum field theory: Witten 18,

Hollands-Sanders '18.



Return to Equilibrium: Robinson 1973 .

S small system (Ogs, 7s, ws).
R large reservoir in a f-thermal state (O, Tr, wr).

Joint but decoupled system S + R described by (O, 7,w) where

O =05 Ox, Tt =75 ® 7h = e85 TOR), Ww=ws®WRg.

Coupled system described by locally perturbed QDS (O, 7/, w) where

T‘t/ — et(5s+572—|—z'[V, =) VEO.

)

Araki's perturbation theory (and extension by Derezinski-J-P '03)

— 71 has a unique p-thermal state wy € N,,.

— (0, 7y, wy) » (Huw, T, Quy, Ly) with Qu, e PETVI2Q Ly, =L+V —JVJ



Return to Equilibrium: Robinson 1973

The Problem: Does the QDS (O, 7/, w) return to equilibrium

lim v o 7 (A) = wy (4),
t— o0

forallveN,and all Ac O ?

e =+ Approach to equilibrium (Oth Law).

e Robinson '73: under strong asymptotic abelianness condition (scattering approach).

e Spohn '77: algebraic condition for Markovian dynamics (weak coupling limit).

e Maassen '84: Return to equilibrium for quantum Langevin equation.



e J-P '96: S coupled to scalar boson field, based on the following circle of ideas from
classical dynamical systems:

(a) Koopmanism. We proved the following consequence of modular structure:

Return to equilibrium holds if the locally perturbed Liouvillean Ly has purely
a.c. spectrum, except for a simple eigenvalue 0.

(b) Spectral deformation. Introduced in QM by Aguilar-Combes '71 using the
dilation group in R

From a dynamical perspective similar to analysis of Ruelle-Perron-Frobenius
transfer operator: essential spectrum depends on the function space on which
it acts. Proper choice of this space reveals Ruelle resonances which govern the
decay of correlations.



J-P '96: Spectral picture of the Liouvillean for 2-level atom coupled to a S-thermal field
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J-P '96: Spectral picture of the Liouvillean for 2-level atom coupled to a G-thermal field

Im(0) < 27/pB

Inverse Laplace transform = return to equilibrium at exponential rate y()\) = O()\?)
for 0 <A < £(B)



Diimcke-Spohn '79, J-P '97, Derezinski-Friiboes '05, Derezinski-J '12: To 2nd order
perturbation theory, resonances lead to the Davies generator.

Bach-Frohlich-Sigal '99: Related approaches using dilation analyticity and iteration
of Feshbach map, A small uniformly in temperature.

Fidaleo-Liverani '99: Ergodic properties for a quantum nonlinear dynamics.

Merkli '01: Virial theorem approach.

Derezinski-J '03: Mourre theory approach, A small uniformly in temperature.

De Roeck-Kupiainen '11: Powerful result using cluster expansion.
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A physically different picture arises when the environment consists in several parts

Ri1,..., R (reservoirs or heat baths) with different intensive thermodynamic parame-
ters.

Rlaﬁ_Xl

R;, B —X; Re. B — X;

R]\476_X1V[

It is then expected that the joint system relaxes to a Non-Equilibrium Steady State
(NESS) w. carrying energy currents $y.

From the mathematical perspective the main difficulty is the fact that, unlike the
thermal state, this NESS is unknown! Moreover, one expects that w & N,,.



The 1st Law

o Let 7h —el*

e Heat flux out the reservoir Ry (=injected power)

®r=06k(V)

Rla/B_ Xl

Rinf =% Ri, B — Xi

Rj\hﬁ - XM

e The first Law: for any 7y -invariant state v

M

k=1



Ruelle’s definition (Rutgers lecture notes 1999-2000)

A NESS is any w*-limit point of

1 T
T/o wo THdt

as T'— +00.

The set 737 (w) of NESSs is non-empty, and consists of Ty -invariant states.



Entropy production and the 2nd Law

Relative entropy of 2 density matrices Ent(u|v) =tr(u(logr —log 1)) <0.
Generalized by Araki to states u,v € N, using modular theory.
Ent(u|lv)=0iff u=v.

Entropy balance relation J-P '01 (consequence of Araki's perturbation theory)

. M
Ent(v o 7 |w) = Ent(v|w) —/ voTy(o)ds, o= Z BrPr.
0 k=1
Assuming w. € 71/ (), one has, for a sequence T}, — oo
: 1 T,
wi(o)= —nh_{rgo — Ent(v o 1" |w) > 0.
n

which expresses the 2nd Law (phenomenologic non-equilibrium thermodynamics)

M
> Xpwi(®k)20,  Xp=B— P
k=1



e Related results by Ojima-Hasegawa-Ichiyanagi '88 and Ruelle '01.

e On physical ground, we expect strict inequality w,(c) >0 to be the signature of
non-equilibrium. Structural theory then implies w ¢ N,,.



Spectral theory of NESS (J-P '02)

Spectral structure of Liouvillean Ly of the non-equilibrium spin-fermion model

—€ 0 €
I
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Im(6) < min(7/Bx)




The Liouvillean Ly acts on the Hilbert space H,,.
Araki-Masuda defined a family of Banach space L?(O,w),p€[1,00], L?*(O,w) ="H,,.
J-P 02, dynamics is implemented isometrically on LP(O,w) by LP-Liouvilleans.

Spectral structure of L'-Liouvillean of the non-equilibrium spin-fermion model

Gamow vector of NESS € L(0O,w)



Spectral structure of L*-Liouvillean of the non-equilibrium spin-fermion model

Gamow vector of NESS € L(O,w)

e Alternative scattering approach: (Hepp '72, Robinson '73, Botvich-Malyshev '83)
Araki-Ho '00, Frohlich-Merkli-Ueltschi '03, Aschbacher-P '03.

e Merkli-Miick-Sigal '07: bosonic reservoirs.



Some Further Developments

J-Ogata-P '06-07: Linear response, Green-Kubo formula and Onsager reciprocity
relations.

Aschbacher-J-Pautrat-P '07: Landauer-Biittiker formalism.
J-P '07: Strict positivity of entropy production

J-Ogata-P-Seiringer '12: Entropy production and quantum hypothesis testing of
the Arrow of Time.

J-P "14: Quantum Landauer principle.

Bruneau-J-Last-P '16: Schroédinger conjecture, Landauer-Biittiker and Thouless
conductances and entropy production.

Benoist-Cuneo-J-Pautrat-P '18-21: Entropy production of repeated quantum mea-
surements.

Benoist-Bruneau-J-Panati-P '24: Entropic fluctuations in quantum statistical
mechanics.



Reviews

e J-P '97: Spectral theory of thermal relaxation
e J-P '02: Mathematical theory of non-equilibrium quantum statistical mechanics

e Aschbacher-J-Pautrat-P '06: Topics in non-equilibrium quantum statistical
mechanics

e J-Kritchevski-P '06: Mathematical theory of the Wigner-Weisskopf atom

e J-Ogata-Pautrat-P '10: Entropic fluctuations in quantum statistical mechanics. An
introduction

e J-P-Westrich '14: Entropic fluctuations of quantum dynamical semigroups



