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What are Open Systems and why are they useful ?

� Physical systems (think of an atom or molecule) are simplest when isolated from
external influences =) closed system.

� In reality, they are rarely isolated, but interact with their environment, and these
interactions have important consequences on their properties =) open systems.



� Open systems are paradigmatic models in non-equilibrium statistical mechanics.

� They allow to implement friction/dissipation in a conservative framework.

� They also provide good models of condensed matter devices .
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� In the Markovian (phenomenological) approach

! the small system S is acted upon by

¡ a quantum noise,

¡ a dissipative force (fluctuation�dissipation).

! S evolves as a quantum Markov process.

! �Integrating� the noise yields a semigroup of completely positive maps.
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� Long history

! Einstein '17: AB-law of atomic radiation.

! Pauli '28: Quantum master equation.

! van Hove '55: �2t-limit.

! Pullé, Davies '74: Mathematical derivation of master equation from �2t-limit.

! Lebowitz-Spohn '78: Irreversible thermodynamics of weakly coupled systems.

! Derezi«ski-De Roeck '08: Extended weak coupling limit.



� In the Hamiltonian (fundamental) approach, the model consists in:

! Small confined system S, few degrees of freedom,

! coupled to M > 1 large reservoirs R1; : : :RM.

! Closed joint system S+R1+ � � �+RM evolves with conservative group t 7! � t.

! Not the the subsystem S (memory, Nakajima�Zwanzig).



� In the Hamiltonian (fundamental) approach, the model consists in:

! Small confined system S, few degrees of freedom,

! coupled to M > 1 large reservoirs R1; : : :RM.

! Closed joint system S+R1+ � � �+RM evolves with conservative group t 7! � t.

! Not the the subsystem S (memory, Nakajima�Zwanzig).

Reservoirs should be inexhaustible sources/bottomless sinks of energy

with good ergodic properties !

�! Idealization: reservoirs are infinitely extended systems at positive density.

� Mathematical description of extended quantum systems at positive density was
developed in the 60'-80'.
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� Basic QM: von Neumann theorem i[p; x] = 1 =) Schrödinger H=L2(R).

� QFT or QSM: a(k)a�(k 0)�a�(k 0)a(k)= �(k�k 0) have uncountably many inequiv-
alent representations

! A system of fermions/bosons is described by C�/W �-algebra O encoding these
(anti)-commutation relations.

! Observables are elements of O.

! A QM state is a positive normalized linear functional !:O!C.

! The Heisenberg dynamics is a group of �-automorphisms t 7! � t= et� of O.

! A Quantum Dynamical System (QDS) is a triple (O; � ; !).
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� QFT or QSM: a(k)a�(k 0)�a�(k 0)a(k)= �(k�k 0) have uncountably many inequiv-
alent representations

! A system of fermions/bosons is described by C�/W �-algebra O encoding these
(anti)-commutation relations.

! Observables are elements of O.
! A QM state is a positive normalized linear functional !:O!C.

! The Heisenberg dynamics is a group of �-automorphisms t 7! � t= et� of O.
! A Quantum Dynamical System (QDS) is a triple (O; � ; !).

� The GNS construction puts (O; � ; !) in a Hilbertian context (H!; �!;
!; L)

!(A)= h
!; �!(A)
!i; �!(�
t(A))= eitL�!(A)e

�itL; L
!=0:

L is the Liouvillean, N!= set of states given by density matrices on H! the folium.

� ��Thermal QDS: ! is equilibrium states for � at inverse temperature � (charac-
terized by the KMS condition).



The Modular structure

� The GNS representation of thermal QDS carries a rich mathematical structure
which is the object of modular theory.

� First appeared in the QDS describing ideal Bose and Fermi gases in thermal equi-
librium. GNS constructed in '63 by Araki and Woods, and Araki and Wyss.

� In a '67 paper, Haag, Hugenholtz and Winnink realized that this structure was more
generally associated to the KMS condition.

� In a '67 unpublished note, Tomita introduced the modular operator and proved
the main theorems of what is now known as Modular Theory or Tomita-Takesaki
Theory. The first published account on it is Takesaki's LNM of '70.



The Modular structure

� Modular Theory is a main tool in the classification of type III factors by Connes
in '73 (Fields Medal '82).

� It played an essential role in the major developments of equilibrium quantum sta-
tistical mechanics in the 70', 2 volumes monograph by Bratteli and Robinson.

� It plays a fundamenal role in Algebraic QFT.

� It is also central to more recent developments in non-equilibrium statistical
mechanics . . .

� . . . and very recent advances on entanglement in quantum field theory: Witten '18,
Hollands-Sanders '18.



Return to Equilibrium: Robinson 1973 14/29

� S small system (OS ; �S ; !S).

� R large reservoir in a �-thermal state (OR; �R; !R).

� Joint but decoupled system S +R described by (O; � ; !) where

O=OS 
OR; � t= �S
t 
 �R

t = et(�S+�R); !=!S 
!R:

� Coupled system described by locally perturbed QDS (O; �V ; !) where

�V
t = et(�S+�R+i[V ; � ]); V 2~ O:

� Araki's perturbation theory (and extension by Derezi«ski-J-P '03)

! �V has a unique �-thermal state !V 2N!.

! (O; �V ; !V ) (H!; �!;
!V ; LV ) with 
!V / e
��(L+V )/2
!, LV =L+V �JVJ
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The Problem: Does the QDS (O; �V ; !) return to equilibrium

lim
t!1

� � �V
t (A)=!V (A);

for all � 2N! and all A2O ?

� =/ Approach to equilibrium (0th Law).

� Robinson '73: under strong asymptotic abelianness condition (scattering approach).

� Spohn '77: algebraic condition for Markovian dynamics (weak coupling limit).

� Maassen '84: Return to equilibrium for quantum Langevin equation.



� J-P '96: S coupled to scalar boson field, based on the following circle of ideas from
classical dynamical systems:

(a) Koopmanism. We proved the following consequence of modular structure:

Return to equilibrium holds if the locally perturbed Liouvillean LV has purely
a.c. spectrum, except for a simple eigenvalue 0.

(b) Spectral deformation. Introduced in QM by Aguilar-Combes '71 using the
dilation group in Rd.

From a dynamical perspective similar to analysis of Ruelle-Perron-Frobenius
transfer operator: essential spectrum depends on the function space on which
it acts. Proper choice of this space reveals Ruelle resonances which govern the
decay of correlations.



J-P '96: Spectral picture of the Liouvillean for 2-level atom coupled to a �-thermal field

−ǫ 0 ǫ

−ǫ 0 ǫ

Im(θ) < 2π/β



J-P '96: Spectral picture of the Liouvillean for 2-level atom coupled to a �-thermal field

−ǫ 0 ǫ

γ(λ)

Im(θ) < 2π/β

O(λ)

ΩωV

Inverse Laplace transform =) return to equilibrium at exponential rate 
(�)=O(�2)
for 0<�<`(�)



� Dümcke-Spohn '79, J-P '97, Derezi«ski-Früboes '05, Derezi«ski-J '12: To 2nd order
perturbation theory, resonances lead to the Davies generator.

� Bach-Fröhlich-Sigal '99: Related approaches using dilation analyticity and iteration
of Feshbach map, � small uniformly in temperature.

� Fidaleo-Liverani '99: Ergodic properties for a quantum nonlinear dynamics.

� Merkli '01: Virial theorem approach.

� Derezi«ski-J '03: Mourre theory approach, � small uniformly in temperature.

� De Roeck-Kupiainen '11: Powerful result using cluster expansion.
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A physically different picture arises when the environment consists in several parts
R1; : : : ;RM (reservoirs or heat baths) with different intensive thermodynamic parame-
ters.

S

R1, β − X1

Rj, β − Xj

RM , β − XM

Rk, β − Xk

Φk

It is then expected that the joint system relaxes to a Non-Equilibrium Steady State
(NESS) !+ carrying energy currents �k.

From the mathematical perspective the main difficulty is the fact that, unlike the
thermal state, this NESS is unknown! Moreover, one expects that !+2N!.



The 1st Law

� Let �Rk

t = et�k

� Heat flux out the reservoir Rk (=injected power)

�k= �k(V )

S

R1, β − X1

Rj, β − Xj

RM , β − XM

Rk, β − Xk

Φk

� The first Law: for any �V -invariant state �

X
k=1

M

�(�k)= 0:



Ruelle's definition (Rutgers lecture notes 1999-2000)

A NESS is any w�-limit point of

1

T

Z
0

T

! � �V
t dt

as T!+1.

The set �V
+(!) of NESSs is non-empty, and consists of �V -invariant states.



Entropy production and the 2nd Law

� Relative entropy of 2 density matrices Ent(�j�)= tr(�(log � � log �))6 0.

� Generalized by Araki to states �; � 2N!, using modular theory.

� Ent(�j�)= 0 iff �= �.

� Entropy balance relation J-P '01 (consequence of Araki's perturbation theory)

Ent(� � �Vt j!)=Ent(� j!)�
Z
0

t

� � �V
s (�)ds; �=

X
k=1

M

�k�k:

� Assuming !+2 �V
+(�), one has, for a sequence Tn!1

!+(�)=� lim
n!1

1

Tn
Ent(� � �V

Tnj!)> 0:

which expresses the 2nd Law (phenomenologic non-equilibrium thermodynamics)

X
k=1

M

Xk!+(�k)> 0; Xk= � � �k:



� Related results by Ojima-Hasegawa-Ichiyanagi '88 and Ruelle '01.

� On physical ground, we expect strict inequality !+(�)> 0 to be the signature of
non-equilibrium. Structural theory then implies !+2N!.



Spectral theory of NESS (J-P '02)

Spectral structure of Liouvillean LV of the non-equilibrium spin-fermion model

−ǫ ǫ0

O(λ)

Im(θ) < min(π/βk)



� The Liouvillean LV acts on the Hilbert space H!.

� Araki-Masuda defined a family of Banach space Lp(O;!),p2 [1;1], L2(O;!)=H!.

� J-P '02, dynamics is implemented isometrically on Lp(O; !) by Lp-Liouvilleans.
� Spectral structure of L1-Liouvillean of the non-equilibrium spin-fermion model

ǫ0

Gamow vector of NESS ∈ L1(O, ω)

−ǫ



Spectral structure of L1-Liouvillean of the non-equilibrium spin-fermion model

ǫ0

Gamow vector of NESS ∈ L1(O, ω)

−ǫ

� Alternative scattering approach: (Hepp '72, Robinson '73, Botvich-Malyshev '83)
Araki-Ho '00, Fröhlich-Merkli-Ueltschi '03, Aschbacher-P '03.

� Merkli-Mück-Sigal '07: bosonic reservoirs.



Some Further Developments

� J-Ogata-P '06-07: Linear response, Green-Kubo formula and Onsager reciprocity
relations.

� Aschbacher-J-Pautrat-P '07: Landauer-Büttiker formalism.

� J-P '07: Strict positivity of entropy production

� J-Ogata-P-Seiringer '12: Entropy production and quantum hypothesis testing of
the Arrow of Time.

� J-P '14: Quantum Landauer principle.

� Bruneau-J-Last-P '16: Schrödinger conjecture, Landauer-Büttiker and Thouless
conductances and entropy production.

� Benoist-Cuneo-J-Pautrat-P '18-21: Entropy production of repeated quantum mea-
surements.

� Benoist-Bruneau-J-Panati-P '24: Entropic fluctuations in quantum statistical
mechanics.



Reviews

� J-P '97: Spectral theory of thermal relaxation

� J-P '02: Mathematical theory of non-equilibrium quantum statistical mechanics

� Aschbacher-J-Pautrat-P '06: Topics in non-equilibrium quantum statistical
mechanics

� J-Kritchevski-P '06: Mathematical theory of the Wigner-Weisskopf atom

� J-Ogata-Pautrat-P '10: Entropic fluctuations in quantum statistical mechanics. An
introduction

� J-P-Westrich '14: Entropic fluctuations of quantum dynamical semigroups


