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Introduction — Irreversibility in Quantum Mechanics

Irreversibility vs Measurements

1927: Heisenberg “reduction of the wave function”

1927: Eddington ’time”s arrow”

1932: von Neumann "quantum arrow of time”

1937: Landau-Lifschitz "quantum vs thermodynamic arrow of time”

7

1963; Wigner “causal vs statistical evolution”

1991: Zurek "environment = decoherence”
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Introduction — Irreversibility in Quantum Mechanics
Irreversibility vs Measurements

@ 1927: Heisenberg “reduction of the wave function” is the result of
the "dephasing” due to interactions with the measuring apparatus:

Dies hat zur Folge, dass die endgultige Transformationsmatrix
ep [...] nicht mehrdurch 3~ cnmdm gegeben ist, sondern jedes
Glied der Summe hat noch einen unbekannten Phasenfaktor. Wir
kénnen also nur erwarten, dass der Mittelwert von e, €, Uber
alle diese eventuellen Phasenanderungen gleich Z,, ist. Eine
einfache Rechnung ergibt, dass dies der Fall ist.

Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und
Mechanik. Z. Phys. 43, 172-198 (1927).

y

1927: Eddington “time”s arrow”
1932: von Neumann "quantum arrow of time”
1937: Landau-Lifschitz "quantum vs thermodynamic arrow of time”

1

1963; Wigner ’causal vs statistical evolution”

© ©6 6 6 6 0 o

1991: Zurek "environment = decoherence”
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Introduction — Irreversibility in Quantum Mechanics

Irreversibility vs Measurements

©

1927: Heisenberg "reduction of the wave function”
1927: Eddington "time”s arrow”

©

If as we follow the arrow we find more and more of the random el-
ement in the state of the world, then the arrow is pointed towards
the future; if the random element decreases, the arrow points
towards the past.

The Nature of the Physical World. McMillan, London, 1928.

1932: von Neumann "quantum arrow of time”
1937: Landau-Lifschitz "quantum vs thermodynamic arrow of time”

1963; Wigner ’causal vs statistical evolution”

1991: Zurek "environment = decoherence”
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Introduction — Irreversibility in Quantum Mechanics
Irreversibility vs Measurements

@ 1927: Heisenberg “reduction of the wave function”
o 1927: Eddington "time’s arrow”
@ 1932: von Neumann "quantum arrow of time”

Therefore, we have reached a point at which it is desirable to uti-
lize the thermodynamical method of analysis, because it alone
makes it possible for us to understand correctly the difference
between 1. [reduction] and 2. [unitary evolution], into which re-
versibility questions obviously enter.

Mathematical Foundations of Quantum Mechanics. Princeton University
Press, 1955.

o 1937: Landau-Lifschitz "quantum vs thermodynamic arrow of time”
Q...

o 1963; Wigner "causal vs statistical evolution”

9 ...

@ 1991: Zurek "environment = decoherence”

Q...
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Introduction — Irreversibility in Quantum Mechanics
Irreversibility vs Measurements

1927: Heisenberg "reduction of the wave function”

1927: Eddington "time”s arrow”

1932: von Neumann "quantum arrow of time”

1937: Landau-Lifschitz "quantum vs thermodynamic arrow of time”

© 6 6 o

Thus in quantum mechanics there is a physical non-equivalence
of the two directions of time, and theoretically the law of increase
of entropy might be its macroscopic expression.

Statistical Physics. Pergamon, 1978.

1963; Wigner ’causal vs statistical evolution”

1991: Zurek "environment = decoherence”

© 6 6 0 o
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Introduction — Irreversibility in Quantum Mechanics
Irreversibility vs Measurements

1927: Heisenberg "reduction of the wave function”

1927: Eddington "time”s arrow”

1932: von Neumann "quantum arrow of time”

1937: Landau-Lifschitz "quantum vs thermodynamic arrow of time”

© 6 6 6 o0 o

1963; Wigner “causal vs statistical evolution”

Returning to the problem of measurement, we see that we have
not arrived either at a conflict between the theory of measure-
ment and the equations of motion, nor have we obtained an ex-
planation of that theory in terms of the equations of motion [...]
However, the fundamental point remains unchanged and a full
description of an observation must remain impossible since the
quantum-mechanical equations of motion are causal and contain
no statistical element, whereas the measurement does.

The problem of measurements. Amer. J. Phys. 31, 6-15 (1963).

o ...
@ 1991: Zurek "environment = decoherence”
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Introduction — Irreversibility in Quantum Mechanics
Irreversibility vs Measurements

1927: Heisenberg "reduction of the wave function”

1927: Eddington "time”s arrow”

1932: von Neumann "quantum arrow of time”

1937: Landau-Lifschitz "quantum vs thermodynamic arrow of time”

1963; Wigner “causal vs statistical evolution”

© 6 6 6 6 0 o o

1991: Zurek "environment = decoherence”

...recent years have seen a growing consensus that progress is
being made in dealing with the measurement problem. The key
(and uncontroversial) fact has been known almost since the in-
ception of quantum theory, but its significance for the transition
from quantum to classical is being recognized only now: Macro-
scopic systems are never isolated from their environments. [...]
The resulting "decoherence” can not be ignored when one ad-
dresses the problem of the reduction of wavepackets. . .

Decoherence and the transition from quantum to classical. Physics Today,
October 1991, 36—44.

v
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Introduction — Irreversibility in Quantum Mechanics

© ©6 6 06 06 6 6 66 o o

Irreversibility vs Measurements

1927: Heisenberg “reduction of the wave function”
1927: Eddington ’time”s arrow”
1932: von Neumann "quantum arrow of time”

1963; Wigner “causal vs statistical evolution”

1991: Zurek "environment = decoherence”

More recently: “statistical mechanics of repeated measurements”
Kimmerer-Maassen’04, Barchielli-Gregoratti’09,
Bauer-Benoist-Bernard’11, Benoist-Pellegrini’14,
Ballesteros-Fraas-Frohlich-Schubnel’16,...

1937: Landau-Lifschitz "quantum vs thermodynamic arrow of time”
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Introduction — Irreversibility & Entropy Production
Fluctuation Relations: “Microscopic” form of the 2" Law

Classical

@ Evans-Cohen-Morriss: Probability of second law violation in
shearing steady flows. Phys. Rev. Lett. 71, 2401 (1993).

@ Gallavotti-Cohen: Dynamical ensembles in nonequilibrium
statistical mechanics. Phys. Rev. Lett. 74, 2694 (1995).

o Ciliberto-Garnier-Hernandez-Lacpatia-Pinton-Ruiz Chavarria:
Experimental test of the Gallavotti-Cohen fluctuation theorem in
turbulent flows. Physica A 340 240 (2004).

(]

Ciliberto-Imparato-Naert-Tana: Heat flux and entropy produced by
thermal fluctuations. Phys. Rev. Lett. 110, 180601 (2013).
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Introduction — Irreversibility & Entropy Production
Fluctuation Relations: “Microscopic” form of the 2" Law

Quantum
@ Kurchan & Tasaki (2000): Extension to quantum dynamics.

@ Andrieux-Gaspard-Monnai-Tasaki: The fluctuation theorem for
currents in open quantum systems. New J. Phys. 11 043014
(2009).

() 505

o Jaksi¢-Ogata-P-Seiringer: Quantum hypothesis testing and
non-equilibrium statistical mechanics. Rev. Math. Phys. 24,
1230002 (2012).

o Batalhao-Souza-Sarthour-Oliveira-Paternostro-Lutz-Serra:
Irreversibility and the arrow of time in a quenched quantum system.
Phys. Rev. Lett. 115, 190601 (2015).
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Introduction — Irreversibility & Entropy Production
Fluctuation Relations: “Microscopic” form of the 2" Law

Quantum
@ Kurchan & Tasaki (2000): Extension to quantum dynamics.

@ Andrieux-Gaspard-Monnai-Tasaki: The fluctuation theorem for
currents in open quantum systems. New J. Phys. 11 043014
(2009).

() 505

o Jaksi¢-Ogata-P-Seiringer: Quantum hypothesis testing and
non-equilibrium statistical mechanics. Rev. Math. Phys. 24,
1230002 (2012).

o Batalhao-Souza-Sarthour-Oliveira-Paternostro-Lutz-Serra:
Irreversibility and the arrow of time in a quenched quantum system.
Phys. Rev. Lett. 115, 190601 (2015).

@ Emergence of the "arrow of time” in repeated quantum measurement processes
o Relation with the Gallavotti-Cohen "fluctuations relations”
@ Thermodynamic formalism for entropy production in classical dynamical systems
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Framework

(Orthodox) Repeated Quantum Measurements

(]

Finite dimensional Hilbert space H
Finite alphabet A = {1,2,...,¢}
Quantum instrument {®a}ac 4
o CP maps ¢, : B(H) — B(H)
o Unital (1) = Y, 4 Pa(1) = 1
o Duality tr(®% (X)Y) = tr(XPa(Y))
Initial state p
Probability measures on finite "quantum trajectories”

© 0

© 0

PT(O.M Wwo -+ UJT) = tr(p ¢w1 o ¢wZ (<IN ¢WT(]1))

(Luders-Schwinger-Wigner formula) extend to a probability P on Q = AN as a

consequence of unitality (Kolmogorov theorem)

o Pras(wi, . wrwris . wrys) = Pr(wr, .

WTH1s-WTLS

@ Time-reversal
Or(wiwz - wr) = O(wr) -+ - O(w2)0(w1)
for some involution 6 : A — A (e.g., spin flip)

Entropy production in repeated quantum measurements
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Framework

(Orthodox) Repeated Quantum Measurements

(]

Finite dimensional Hilbert space H
Finite alphabet A = {1,2,...,¢}
Quantum instrument {®a}ac 4
o CP maps ¢, : B(H) — B(H)
o Unital (1) = Y, 4 Pa(1) = 1
o Duality tr(®% (X)Y) = tr(XPa(Y))
Initial state p
Probability measures on finite "quantum trajectories”

© 0

© 0

IPT(O.M Wwo -+ UJT) = tr(p ¢w1 o ¢W2 (<IN ¢WT(]1))

(Luders-Schwinger-Wigner formula) extend to a probability P on Q = AN as a

consequence of unitality (Kolmogorov theorem)

o Pras(wi, . wrwris . wrys) = Pr(wr, .

WT1s--WT4S
@ Time-reversal
Or(wiwyp - wr) = O(wr) - - - O(wp)0(w1)
for some involution 6 : A — A (e.g., spin flip)
Assumption A
Initial state p is faithful and invariant: p > 0, ®*(p) = p

7"'}7—)
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Basic Properties

@ ¢*(p) = p = Pisinvariant under the left shift 7 : (wq,wo,...) = (wo,ws,...)
Quantum instrument ({®a}ac .4, p) = classical dynamical system (2, 7, P)

From the quantum mechanical perspective
Z PT+S(UJ1 sy WTHWT gy - - 7wT+S) = IEDS(WTJr‘l PR 7wT+S)
WeyesWT

is a decoherence assumption.
@ p > 0 = the upper quasi-Bernoulli property holds

IP)T+TI S CPTPT/ OTﬁT, ﬁ]q,r/ S C@T@T’ OTﬁT

o The probability of time-reversed trajectories P = Pt o ©1 describes the
instrument {®,}5c 4 ([Crooks’08])

Ba(X) = p 1207, (0/2Xp!/2)p 1/

o If 1 is simple eigenvalue of ®, then P is ergodic (<= ¢ irreducible)
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Basic Properties

@ ®*(p) = p = Pisinvariant under the left shift 7 : (wy,ws,...) — (w2, ws,...)
Quantum instrument ({®a}ac .4, p) = classical dynamical system (2, 7, P)

From the quantum mechanical perspective
Z [P)T+S(w1 yee ey WTHWT Ay 7wT+S) = IP)S(L‘}TJr‘l PR 7WT+S)
Weyee, WT
is a decoherence assumption.
@ p > 0 = the upper quasi-Bernoulli property holds
Pr. < CPrPp O‘I‘iT7 ﬁT+T/ SC@T@T/OTiT

@ The probability of time-reversed trajectories @T = Pt o ©7 describes the
instrument {®,}2c 4 ([Crooks’08])

Sa(X) = p~ /205 4 (02 Xp!/2)p ! /2

@ If 1 is simple eigenvalue of @, then PP is ergodic («= @ irreducible)

Remark

Special case of "finitely correlated states” or "matrix product states” of 1D spin chains
[Fannes-Nachtergaele-Werner'92]
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Basic Properties

o ¢*(p) = p = Pisinvariant under the left shift 7 : (wq,wo,...) = (wo,ws,...)
Quantum instrument ({®a}ac 4, p) = classical dynamical system (Q, 7, P)

From the quantum mechanical perspective
> Pris(Wis e wrwrits - wrs) = Ps(writ, - wris)
W ey, WT
is a decoherence assumption.
@ p > 0 = the upper quasi-Bernoulli property holds
Pr,.m < CPrPp O‘I’iT7 ﬁT+T/ < C@T@T’ or T

@ The probability of time-reversed trajectories @T = Py o ©7 describes the
instrument {5} 5c 4 ([Crooks’08])

®a(X) = p~ 205 4 (02 Xp"/2)p /2

@ If 1 is simple eigenvalue of ®, then P is ergodic (<= ¢ irreducible)

Goal

Quantify the emergence of the arrow of time as a "distance” between Py and Printhe
limit T — oo
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Strategy

@ Universal mechanism for entropic fluctuation relations out of equilibrium

@ Applies to classical and quantum dynamical systems

@ Need to develop a thermodynamic formalism for non-Gibbsian dynamical systems

@ Motivated by a body of recent works on subadditive ergodic theory and multifractal
analysis of measures [Feng-Kaenmaki-Barreira,...]
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Strategy

@ Universal mechanism for entropic fluctuation relations out of equilibrium

@ Applies to classical and quantum dynamical systems

@ Need to develop a thermodynamic formalism for non-Gibbsian dynamical systems

@ Motivated by a body of recent works on subadditive ergodic theory and multifractal
analysis of measures [Feng-Kaenmaki-Barreira,...]

Assumption B
PP is ergodic and supp Pr = supp P for all T (large enough) J

o P and P equivalent for all T (large enough)
@ Entropy production reflects the dichotomy:
P=P (equilibrium, detailed balance) or P L P (nonequilibrium)

o Out of equilibrium, the separation between P and Pr as T — oo is quantified by
relative entropies
S(Pr|Pr) =Pr(o7) >0,  Sa(Pr[Pr) = logPr(e™*T)
expectation and cumulant generating function of the entropy production random
variable P
or(w) =log 2T — 516 or(w)

Pr(w)

Entropy production in repeated quantum measurements 7/22




Fluctuation relations

Pr(s) =P ({wl ort) =s})

@ Law of mean entropy production rate on [0, T]
@ Assumption B = Pr(s) > 0< Pr(—s) >0
o Relative entropies

S(Pr[Pr) = sPr(s) >0,  Sa(Pr[Pr)=log e **Pr(s)

o Symmetry of the Rényi entropy S1_Q(PT|@T) = SQ(IPT@T) yields the finite-time
fluctuation relation

PT(_S) — e—Ts
Pr(s)

@ More (LDP, CLT, Chernoff & Hoeffding exponents, Gallavotti-Cohen fluctuation
relations) if we can control

1 A
li — S (Pr|P
Aim 7-3 (Pr|PT)

Entropy production in repeated quantum measurements 8/22



Entropy production

Results from ergodic theory

@ Gibbs-Shannon entropy: S(P1) = — 3" c 47 Pr(w) log Pr(w)

@ Kolmogorov-Sinai entropy: S(P) = limr_, ., T~'S(Pt) € [0,log ]

@ Shannon-McMillan-Breiman: S(P) = — limr_, o, T~ " log P7 (w1, - ..,wT), for
P-a.e. wandin L'(Q,P)

o Gibbs property (Bowen)

Cte- Shvor' < by < gem Ty vor

for some (Holder) continuous potential ¢ (Gallavotti-Cohen chaotic hypothesis)
generally fails for repeated measurement processes =- need thermodynamic
formalism for non-Gibbsian systems

@ Weaker than Gibbs: Upper & Lower Quasi-Bernoulli properties
Ci1]P)T]P]T’ O’TT S PT+T’ S CPTPT/ OTT

implies existence and differentiability of the entropic pressure
1 —~
Ro>aw— e(Oé) = lim 7SQ(PT|PT)
T—oo T

@ Dynamical analogue of thermodynamic free energy/pressure
@ Assumptions A & B only ensure upper quasi-Bernoulli = e(«) may develop
singularities: dynamical phase transition

Entropy production in repeated quantum measurements
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Entropy production: Level |

Theorem | (Entropy production)

Under Assumptions A & B
@ Mean entropy production rate

1
lim =P =Ep >
Tl T 7(oT) p>0
@ Strong law of large numbers: P-a.s.
lim ! (w) = E; (1)
—o7(w) =
Tooo T T P

@ If Ep < oo then (1) holds in L'(Q, P)
o Stein’s exponent: Let s7(c) = min{Pr(A) | A € AT, Pr(A) > ¢} for € €]0, 1]

|im1los()_E
— €) = —
- TgT p
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Entropy production: Level |

Theorem | (Entropy production)

Under Assumptions A & B
@ Mean entropy production rate

1
lim —P7(o7)=Ep>0
TI T T ( T ) p =
(*] Strong law of Iarge numbers: P-a.s.
lin l T( ) = Ep
oT(Ww) =
T—oo T

@ If Ep < oo then (1) holds in L'(Q, P)
o Stein’s exponent: Let s7(c) = min{Pr(A) | A € AT, Pr(A) > ¢} for € €]0, 1]

|im1los() E
— €) = —
- TgT p

(1)

Message

0Ep=0=P=P&Ep>0=PLP

o Pr(Ar)>e>0forlarge T = @T(AT) < e~ TEr exponential separation of the
supports of Pr and Pr

Entropy production in repeated quantum measurements
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Entropy production: Level ll

Rényi’s relative entropy

er(a) = Sa(Pr|Pr) =log Pr(e™77)

is a convex function of o

has left/right derivatives 8+ e(«) where finite

is non-positive for a € [0, 1]

is non-negative for a € R\ [0, 1]

vanishesata =0and a = 1

satisfies er(1 — a) = er(«a) (the Gallavotti-Cohen symmetry)

© © 6 6 ¢ o

All these properties will be preserved in the limit (= entropic pressure)
e(a) = _lim ! er(a)
* = T—oo T Tl

whenever it exists.

Entropy production in repeated quantum measurements
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Entropy production: Level ll

Suppose that Assumptions A & B hold and denote by P, the set of r-invariant
probability measures on Q.

@ The entropic pressure e(«) exists for all o € [0, 1].
o Either e(ar) = —oo for all « €]0, 1], or e(a) > —oo for all o €]0, 1].
@ The limit

1
Aim 7Q(Iog Pr —logQr)

f(Q) =

exists for all Q € P, and satisfies
~ 1
af(Q) + (1 — )f(Q) > limsup —er(a)
Tooo T

forall a € R.
@ For o € [0,1] R
e(a) = sup af(Q)+ (1 — a)f(Q)

QeP,

Entropy production in repeated quantum measurements
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Entropy production: Level ll

Theorem Il (thermodynamic formalism, cont'd)
o If e(«) is finite for « € [0, 1] then
Peq(a) = {Q € Pr | af(Q) + (1 — &)f(Q) = ()}

is a non-empty compact convex subset of P, a Choquet simplex and a face of P
whose extreme points are ergodic.

@ For a €]0,1[

o"e(a) = _inf f@Q-fQ < sup (@) —f(Q)=0"e(a)

eq () QEPeq(e)
® Peg(0) = {P}, Peq(1) = {F} and
—0Te(0) =Ep=0"e(1)

Remark
o If f(Q) and £(Q) are finite, then #(Q) — /(Q) = — lim7_,0c +Q(o7) J

Entropy production in repeated quantum measurements 13/22



Entropy production: Level ll

Assumption C (weaker than lower quasi-Bernoulli)
There exists T* > 0 and Cr« > 0 such that

P(wér)P(wév)

— == = CT*
[E1<T* P(w)P(v)P(w)P(v)

for all finite words w, v (i.e., cylinder sets)

Remarks
@ Minimal assumption for Theorem Il|
@ Often easy to check in concrete models
o Irreducibility of 3>, ®, ® ®a = C
@ Simple algebraic criterion in terms of Kraus representations

Entropy production in repeated quantum measurements
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Entropy production: Level ll

Under Assumptions A,B & C
@ « € [0, 1] = Pey(a) is a singleton: e(«) is differentiable on ]0, 1].
@ For any open set O C] — Ep, Ep|[ the local LDP
. 1 1 .
lim =P ({w € Q' —or(w) € O}) = — inf _I(s),
T s€0

T—oo T

holds with rate function /(s) = —inf,c[o,1;(as + e(a)) satisfying the fluctuation
relation
I(—s)=1(s)+s

1 =
@ Chernoff exponent: _lim —log(2 — ||Pr — Prl|var) = €(1/2)
T—soo T

@ Hoeffding exponent: for s > 0

inf {Iim sup 1 log Pr(A7) | limsup 1 logPr(AT \ A7) < fs}
{ArCAT} T T T T

—sa — e(a)
=— sup ——~2
aclo,] 11—«
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Entropy production: Level ll

@ Assuming the lower Quasi-Bernoulli property one can show that e(«) is
differentiable on R. As a consequence, the LDP for the mean entropy production
rate holds for all open sets O C R.

@ ®, positivity improving for all a € A = lower quasi-Bernoulli (~ Gallavotti-Cohen
chaotic hypothesis)

@ We have simple examples of repeated measurement processes for which
Assumptions A, B & C hold but the lower quasi-Bernoulli property fails in a strong
way

Pr(wrvr) T
Pr(wr)Pr(vr)

Nevertheless, in these example the entropic pressure e(«) exist and is finite for all
a € R. It exhibits a second order phase transition at o = 0/1.

s v>0

Entropy production in repeated quantum measurements 16/22



Examples

A Markov instrument: ®(; (X) = p;

DXL G
® p = (pj) stochastic matrix p; > 0 = unique invariant state 7p =
@ Time-reversal 6(i,j) = (j, )

{l/)} ON-basis: A holds with p = 3=, 7;|i) (i|

© Bholds and Ep = 37, ; m;pj log %

(4]

(]

Ep = 0 iff detailed balance 7;p; = m;pj; holds
C holds. Entropic pressure e(«) is given by the spectral radius of the matrix

©

m(a) = (p}*p})

@ Lower quasi-Bernoulli fails, nevertheless R 5 a — e(«) is real analytic

Entropy production in repeated quantum measurements 17/22



Examples

A Bernoulli instrument (ancilla measurement of Sy, in S; @ S 2)
Let 5(9) and $(P) denote spin ¢ and spin 1/2 operators, €,w, A, t € R, n €]0,1]

H=eSP +wS{) +A8P) . §6)

1 1
PP = > +(2n— 1)81(;7)7 P(ip) =3 + S((;p)

o1 (p) = (14® @ uP)((1 © PP)e M (p @ pP)e™), o(+) =7

50

Assumptions A,B & C hold. P is Bernoulli,

Ep = (27 —1)log in’ e(a) =log(n*(1 =)'~ +7'*(1 = n)*)

Entropy production in repeated quantum measurements
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Examples

A quasi-Bernoulli perfect Kraus instrument: ¢ (X) = V. XV}

. 0 —sinf/2 ([ cos6/2 0 .
V’_<cos<9/2 0 )’ V+—( 0 sine/z)’ 0(x) =+

7

+

P+(p)
ei6(173®02)/2

o Satisfies Assumptions A,B & C for 6 €]0, w/2].
o P is quasi-Bernoulli but not Bernoulli.
o Entropic pressure is real analytic.

Entropy production in repeated quantum measurements 19/22



Examples

A Non quasi-Bernoulli perfect Kraus instrument: ¢, (X) = VL XV}

_ vecosf  —sinf/2 _( —sing/2 0 _
V- = ( —sing/2 0 v Vo= _coso —sing/2 )’ 0(F) ==
Satisfies Assumptions A, B & C for 6 €]0, w/2[ but is not Lower Quasi-Bernoulli

1+44/1—4sin*6/2

2sin?0/2

. Paria(=e =)
T—oo 2T + 1 PT+1(_"'_+)PT(_"'_)

=—-¢{=—log <0
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Examples

A Non quasi-Bernoulli perfect Kraus instrument: ¢, (X) = V XV}

V. — Vcosfd  —sinf/2 Ve — —sing/2 0
-~ \ —sing/2 0 T

Satisfies Assumptions A, B & C for 6 €]0, 7/2[ but is not Lower Quasi-Bernoulli

Porii(=o = — o)
Proa(= = HPr(— )

1
i I - e—
2T+ 1 &= —log

2sin?6/2

-0 ~05 00 10 15 20

Entropic pressure and its derivative for ¢ = /3

—cosf —sing/2 )’ o) =+

14 4/1—4sin*9/2
<0
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Examples

A Non quasi-Bernoulli perfect Kraus instrument: ¢, (X) = V. XV}

_ Vcosd  —sinf/2 [ —sing/2 0 B
V- = ( —sing/2 0 )’ Vi = ( —\/cos —sing/2 )’ 0F) =+

Satisfies Assumptions A, B & C for  €]0, w/2[ but is not Lower Quasi-Bernoulli

4 14+ 4/1—4sin*6/2
lim 1 log Poriq( + ) — ¢ / <0

= —lo
oo BT +1 0 Pryq(— - — DPr(— ) O 2sin?es2

Central limit theorem fails: as T — oo

or —P(or) 3
VT écoshg(u_lv‘)

with u, v ~ N(0, 1).

Entropy production in repeated quantum measurements
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Perspectives

@ Further develop the thermodynamic formalism for non-Gibbsian systems using
results from the subadditive ergodic theory.

o Criteria for analyticity, occurrence of first order phase transitions ?

o Investigate the physical meaning of phase transition beyond the failure of CLT.
Occurrence of anomalous scaling ?

@ Special measurements, e.g., thermal probes.
@ Continuous measurements/monitoring.
o ...
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Thank you !
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