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“Quantum Markov” has been used and abused !
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Abstract Setup

The Driving Classical Markov Chain
Finite state space Ω.

Transition matrix P ∈ RΩ×Ω (right stochastic).

Probability vector π ∈ RΩ.

Markov chain ω = (ωn)n∈N ∈ ΩN with probability measure

P(ω0 = i0, . . . , ωk = ik ) = πi0 Pi0 i1 · · ·Pik−1 ik .

Left shift on ΩN: ω = (ω0, ω1, . . .) 7→ σ(ω) = (ω1, ω2, . . .).

The Quantum Machinery

System S with finite dimensional C∗-algebra of observables A.

(ρω)ω∈Ω family of states on A.

(Lω)ω∈Ω family of CPTP maps on A∗.

The Random Dynamical System

ρn(ω) = Lωn · · · Lω1ρω0 .

is a Markovian Repeated Interaction System (MRIS)
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A Feynman–Kac Formalism

C∗-algebra
A = AΩ = {Ω 3 ω 7→ X(ω) ∈ A}

diagonal subalgebra of the full algebra of Ω× Ω matrices with entries in A
equipped with the trace

Tr X =
∑
ω∈Ω

trX(ω).

Extended observables X ∈ A depend on which reservoir S is interacting with.

A∗ = AΩ
∗ with duality

A∗ × A 3 (R,X) 7→ 〈R,X〉 =
∑
ω∈Ω

〈R(ω),X(ω)〉

Extended states R ∈ A∗, R(ω) ≥ 0, Tr R = 1.

Feynman–Kac CPTP map on A∗

(LR)(ω) =
∑
ν∈Ω

PνωLνR(ν)

, 10/36



The Semigroup Structure

Rn(ω) = E[ρn(ω)1ωn+1=ω] = E[ρn(ω)|ωn+1 = ω]P(ωn+1 = ω)

Lemma 1

tr Rn(ω) = P(ωn+1 = ω) = (πPn+1)ω = π
(n+1)
ω∑

ω∈Ω

Rn(ω) = E[ρn(ω)]

Rn(ω) = (LnR0)(ω)

E[〈ρn(ω),X(ωn+1〉] = 〈LnR0,X〉

Proof. By elementary direct calculation.
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Extended Steady States

Definition
An extended state R+ such that LR+ = R+ is called Extended Steady State (ESS).

R+ always exists, but may not be unique.

π+ω = trR+(ω), ρ+ω =
LωR+(ω)

π+ω
,

π+P = π+: the Markov chain started with π+ is stationary.

The repeated interaction process driven by this stationary chain and started with
ρ+ is stationary

E+[〈ρ+n(ω),X(ωn+1〉] = 〈R+,X〉

When unique, R+ convey important information on the large time asymptotics of
the process.
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Primitivity, Irreducibility

Definition
L is positivity improving if, for any R ∈ A∗, R ≥ 0 =⇒ LR > 0.

L is primitive if Ln is positivity improving for some n > 0.

L is irreducible if etL is positivity improving for some t > 0.

The following are well known ([Evans, Høegh-Krohn 1978])

sp(L) is a subset of the closed unit disk containing 1, and the eigenspace
associated to the eigenvalue 1 contains an extended steady state R+.
L is irreducible iff its eigenvalue 1 is simple. In this case, there is a unique
extended steady state R+. Moreover, R+ is faithful and for any R ∈ A∗∣∣∣∣∣∣1n

n−1∑
k=0

(
Lk R − 〈R,1〉R+

)∣∣∣∣∣∣ = ‖R‖O(n−1)

as n→∞.
L is primitive iff its simple eigenvalue 1 is gapped

∆ = max{|z| | z ∈ sp(L) \ {1}} < 1.

Moreover, for any R ∈ A∗ and ε > 0,∣∣LnR − 〈R,1〉R+

∣∣ = ‖R‖O((∆ + ε)n)
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Primitivity, Irreducibility

Lemma 2
Set

L̄ =
∑
ω∈Ω

πωLω

where π is a faithful probability vector, and note that L̄ is a CPTP map on A∗.
L is positivity improving iff P and every Lω are.

If L is irreducible (resp. primitive), so are P and L̄.

If P is positivity improving, then L is irreducible (resp. primitive) iff L̄ is.

If every Lω is positivity improving, then L is irreducible (resp. primitive) iff P is.
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Ergodic Theory of MRIS
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A Random Ergodic Theorem

[Beck–Schwartz 1957]
Let X be a reflexive Banach space and (S,Σ,m) a σ-finite measure space. Let there
be defined on S a strongly measurable function Ts with values in the Banach space
B(X) of bounded linear operators on X. Suppose that ‖Ts‖ ≤ 1 for all s ∈ S. Let h be
a measure-preserving transformation in (S,Σ,m). Then for each X ∈ L1(S,m) there is
an X̄ ∈ L1(S,m) such that

lim
n→∞

1
n

n∑
i=1

TsTh(s) · · ·Thi−1(s)X(hi (s)) = X̄(s)

strongly in X, a.e. in S, and
X̄(s) = Ts(X̄(h(s)))

a.e. in S. Moreover, if m(S) <∞ , then X̄ is also the limit in the mean of order 1.
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A Pointwise Ergodic Theorem for MRIS (I)

Assumption (STAT) One of the two following conditions is satisfied:

π is stationary: πP = π.

There exists a faithful stationary measure: π+P = π+ > 0.

Theorem 1
Under Assumption (STAT), for any X ∈ A, the limit

lim
N→∞

1
N

N−1∑
n=0

L∗ω1
· · · L∗ωn X(ωn+1) = X̄ (ω)

exists P-almost surely and in L1(ΩN,P;A). The limiting function is such that

L∗ωX̄ (σ(ω)) = X̄ (ω).

Moreover, the extended observable ¯̄X ∈ A defined by

¯̄X (ω) = E[X(ω)|ω1 = ω],

satisfies
L∗ ¯̄X = ¯̄X .

, 17/36



A Pointwise Ergodic Theorem for MRIS (II)

Corollary 2
If L is irreducible, its unique ESS R+ is faithful and for any X ∈ A one has

X̄ (ω) = lim
N→∞

1
N

N−1∑
n=0

L∗ω1
· · · L∗ωn X(ωn+1) = 〈R+,X〉1

for P-almost every ω ∈ Ω and in L1(ΩN,P;A). In particular, for any initial state (ρω)ω∈Ω

and any X ∈ A,

lim
N→∞

1
N

N−1∑
n=0

〈ρn(ω),X(ωn+1)〉 = 〈R+,X〉

holds P-almost surely and in L1(ΩN,P). Moreover, if L is primitive, then

lim
n→∞

E+[〈ρn(ω),X(ωn+1)〉] = 〈R+,X〉.
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Thermodynamics of MRIS

From now on we assume more structure:

CωS Vω

Lωρ = trHCω (Uω(ρ⊗ ρCω )U∗ω)

with

Uω = e−iτω(HS⊗1+1⊗HCω+Vω)

and

ρCω = e−βω(HCω−Fω)

, 19/36



The Heat Currents

Energy dissipated during the n + 1th interaction

∆Qn+1(ω) = tr
(
ρn(ω)⊗ ρCωn+1

(U∗ωn+1
HCωn+1

Uωn+1 − HCωn+1
)
)

= −〈ρn(ω), J(ωn+1)〉

with
J(ω) = trHCω (U∗ω[Uω ,HCω ](1⊗ ρCω )).

Further setting
Jν : Ω 3 ω 7→ δνωJ(ν),

yields an extended observable Jν ∈ A describing the energy transferred from
reservoir Rν to the system S during a single interaction.

Time-averaged quantum mechanical expectation of the heat extracted from
reservoir Rν during a single interaction

J̄ν(ω) = lim
N→∞

1
N

N−1∑
n=0

〈ρn(ω), Jν(ωn+1)〉

If L is irreducible, P-a.s.
J̄ν(ω) = 〈R+, Jν〉
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Entropy Balance

After nth interaction, the von Neumann entropy of S is

S[ρn(ω)] = −〈ρn(ω), log ρn(ω)〉.

During the n + 1th interaction, this entropy decreases by

∆Sn+1(ω) = S[ρn(ω)]− S[ρn+1(ω)].

Entropy balance

∆Sn+1(ω) + epn+1(ω) = βωn+1 ∆Qn+1(ω),

where, by definition, epn+1(ω) is the entropy production associated with the
n + 1th interaction.

Recall: relative entropy of states is defined as

Ent(µ|ρ) = 〈µ, log µ− log ρ〉 ≥ 0

with equality iff µ = ρ.

Lemma 3 (2nd-Law of Thermodynamics)

epn+1(ω) = Ent
(

Uωn+1 (ρn(ω)⊗ ρCωn+1
)U∗ωn+1

∣∣∣∣ ρn+1(ω)⊗ ρCωn+1

)
≥ 0

implies Landauer’s bound

∆Qn+1(ω) ≥
∆Sn+1(ω)

βωn+1

.
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Thermodynamic Equilibrium

Time average of the entropy balance relation

S[ρ0(ω)]− S[ρN (ω)]

N
+

1
N

N−1∑
n=0

epn(ω) = −
∑
ν∈Ω

βν
1
N

N−1∑
n=0

〈ρn(ω), Jν(ωn+1)〉

yields, in the limit N →∞
ēp(ω) = −

∑
ν∈Ω

βν J̄ν(ω)

, if L is irreducible,

ēp(ω) = −
∑
ν∈Ω

βν J̄ν(ω) = −
∑
ν∈Ω

βν〈R+, Jν〉

Equilibrium means no heat currents =⇒ no entropy production

Theorem 3
If L is irreducible, then ēpn(ω) = 0 holds P-a.s. iff the family of states (ρ+ω)ω∈Ω

satisfies
Uω(ρ+ν ⊗ ρCω )U∗ω = ρ+ω ⊗ ρCω

for all ν, ω ∈ Ω such that Pνω > 0. In this case the entropy balance reads

S[ρ+ωn+1 ]− S[ρ+ωn ] = βωn+1 〈ρ+ωn , J(ωn+1)〉 = 0

P-a.s. and in particular
〈R+, Jν〉 = 0

so that no heat currents⇐⇒ no entropy production
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Full Statistics, Fluctuation Relations and Linear Response
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Full Statistics of Environmental Entropy

Repeated two-time measurement protocol: Entropy observable

Sω = − log ρCω = βω(HCω − Fω)

is measured before and after each interaction with Cω with outcome

ξ = (ς, ς′) ∈ Σ× Σ, Σ =
⋃
ω∈Ω

sp(Sω).

Lüders–Schwinger–Wigner formula

Q(ξ1, . . . ξn|ω) = 〈Lωn,ξn · · · Lω1,ξ1ρω0 ,1〉

with
Lω,ξρ = e−ς trHCω

(
(1⊗ 1{Sω=ς′})Uω(ρ⊗ 1{Sω=ς})U∗ω)

)
gives the joint probability law of ξ1, . . . , ξn after n interactions, conditioned on ω.

Q extends to a probability on (Σ× Σ)N, so we can make the following

Definition
The Full Statistics of Entropy is the probability measure

P̃(dξdω) = Q(dξ|ω)P(dω)

on (Σ× Σ× Ω)N.

, 24/36
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Lüders–Schwinger–Wigner formula

Q(ξ1, . . . ξn|ω) = 〈Lωn,ξn · · · Lω1,ξ1ρω0 ,1〉

with
Lω,ξρ = e−ς trHCω

(
(1⊗ 1{Sω=ς′})Uω(ρ⊗ 1{Sω=ς})U∗ω)

)
gives the joint probability law of ξ1, . . . , ξn after n interactions, conditioned on ω.

Q extends to a probability on (Σ× Σ)N, so we can make the following

Definition
The Full Statistics of Entropy is the probability measure

P̃(dξdω) = Q(dξ|ω)P(dω)

on (Σ× Σ× Ω)N.
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Full Statistics of Environmental Entropy

Set δξ = ς′ − ς for ξ = (ς, ς′)

The total increase of the entropy of the reservoirs after N interactions is

IN = (IN,ν)ν∈Ω, IN,ν =
N∑

n=1

1{ωn=ν}δξn.

L[α]
ω :=

∑
ξ∈Σ×Σ

e−αδξLω,ξ

(L[α]R)(ω) :=
∑
ν∈Ω

PνωL[αν ]
ν R(ν) α = (αω)ω∈Ω ∈ RΩ

`(α) = max{|λ| |λ ∈ sp(L[α])}
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Limit Theorems . . .

Theorem 4
Under Assumption (STAT), one has

lim
N→∞

Ẽ
[IN,ν

N

]
= −βνE[〈ρω0 , J̄ν(ω)〉].

If L is irreducible, then the weak law of large numbers holds, i.e., the limit

lim
N→∞

IN,ν

N
= −βν〈R+, Jν〉,

exists in probability.

If L is irreducible, then the central limit theorem holds, i.e., as N →∞

1
√

N

(
IN − Ẽ [IN ]

)
converges in law towards a centered Gaussian vector with covariance matrix

Cων = `ων − `ω`ν ,

where
`ω = (∂αω `)(0), `ων = (∂αν ∂αω `)(0).
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. . . and Large Deviation Principle

Theorem 4 (cont’d)
If L is primitive, then the limit

e(α) = lim
N→∞

1
N

log Ẽ[e−α·IN ]

exists, defines a real analytic function. Moreover, for all α ∈ RΩ,

e(α) = log `(α).

If L is primitive, then the sequence of random vectors (IN )N∈N satisfies a large
deviation principle: for any Borel set G ⊂ RΩ,

− inf
ς∈G̊

I(ς) ≤ lim inf
N→∞

1
N

log P̃
(
IN

N
∈ G

)
≤ lim sup

N→∞

1
N

log P̃
(
IN

N
∈ G

)
≤ − inf

ς∈Ḡ
I(ς),

where G̊/Ḡ denote the interior/closure of G and the good rate function ς 7→ I(ς) is
given by the Legendre-Fenchel transform of the function α 7→ e(−α),

I(ς) := sup
α∈RΩ

(α · ς − e(−α)) .
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Fluctuation Relations

A strong form of Fluctuation Relations [Gallavotti-Cohen (1995)] holds under

Assumption (TRI) The two following conditions are satisfied:

The driving Markov chain is reversible, i.e., satisfies the detailed
balance condition: for all ω, ν ∈ Ω,

πωPων = πνPνω

There are anti-unitary involutions θ and θω acting on HS and HCω ,
such that

θωHCω = HCωθω , (θ ⊗ θω)Uω = U∗ω(θ ⊗ θω)

for all ω ∈ Ω.

Theorem 5
If L is primitive and Assumption (TRI) is satisfied, then the rate function governing the
large deviations of the entropy full statistics satisfies the Fluctuation Relation

I(−ς)− I(ς) =
∑
ω∈Ω

ςω , ( for all ς ∈ RΩ),

which is associated with the Gallavotti-Cohen symmetry (1 = (1, 1, . . . .1))

e(1−α) = e(α), ( for all ω ∈ RΩ).
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Fluctuation Relations

The total entropy dumped in the environment after N interaction is

σN =
∑
ω∈Ω

ςN,ω = IN · 1

Corollary 6
Under the Hypotheses of Theorem 5, the large deviation estimate

− inf
s∈S̊

Ī (s) ≤ lim inf
N→∞

1
N

log P̃
(σN

N
∈ S

)
≤ lim sup

N→∞

1
N

log P̃
(σN

N
∈ S

)
≤ − inf

s∈S̄
Ī (s)

holds with rate
Ī (s) = inf{I(ς) | ς · 1 = s}

satisfying the Fluctuation Relation

Ī (−s)− Ī (s) = s

The last relation can be loosely formulated as

P̃(σN = −Ns)

P̃(σN = Ns)
' e−Ns

showing that negative values of entropy production are exponentially suppressed, a
strong form of the 2nd Law of Thermodynamics.
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Linear Response

Fluctuation relations as far from equilibrium extensions of fluctuation–dissipation
relations (Green–Kubo, Onsager reciprocity) [Gallavotti (1996)].

Is there a notion of equilibrium for MRIS ?

Assumption (EQU) The three following conditions are satisfied:

All reservoirs are at the same temperature: βν = β̄.

L is irreducible with unique ESS R+.

Entropy production vanishes:
∑
ν∈Ω β̄〈R+, Jν〉 = 0.
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Linear Response

Under Assumption (EQU), let us perturb the reservoirs states

ρCω,ζ = e−(β̄−ζω)(HCω−Fω,ζ), ζ = (ζω)ω∈Ω ∈ RΩ,

and denote by the subscript ζ the correspondingly perturbed quantities. The following
is a strong form of the 1st Law of Thermodynamics (energy conservation).

Theorem 6
Under Assumption (EQU), Lζ is irreducible. It is primitive whenever L is.

For Pζ a.e. ω ∈ ΩN ∑
ν∈Ω

J̄ νζ(ω) = 〈R+ζ , Jνζ〉 = 0.

Under the law P̃ζ the limit

lim
N→∞

1
N

∑
ν∈Ω

(β̄ − ζν)−1IN,νζ = 0

holds in probability.

The Gaussian measure obtained in Theorem 4 as the limiting law of

1
√

N

(
INζ − Eζ [INζ ]

)
as N →∞ is supported by the hyperplane zζ = {ς |

∑
ν∈Ω(β̄ − ζν)−1ςν = 0}.
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Linear Response

Theorem 6 Cont’d
Suppose in addition that L is primitive.

The cumulant generating function has a translation symmetry: for all α ∈ RΩ and
γ ∈ R

eζ(α+ γβ−1) = eζ(α), β−1 = ((β̄ − ζω)−1)ω∈Ω.

The rate function of the large deviation principle of the full statistics of entropy
satisfies

Iζ(ς) = +∞

for ς 6∈ zζ .
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Linear Response

Set

S+ω = − log ρ+ω = − log
LωR+(ω)

tr R+(ω)
,

Ĵν(ω) = δων trCω ((UωHCωU∗ω − HCω )(1⊗ ρCω )) ,

L̂ωρ = trCω (U∗ω(ρ⊗ ρCω )Uω)

Theorem 7
If, in addition to the previous Assumptions (TRI) also holds, then the kinetic
coefficients

Lων = ∂ζν 〈R+ζ , Jωζ〉
∣∣
ζ=0

are given by the Green-Kubo formula

Lων =
1
2

∑
n∈N

E+[〈ρ+ω0 , Ĵν(ω0)L∗ω1
· · · L∗ωn Jω(ωn+1)〉+ 〈ω ↔ ν〉]

+δωνE+[〈ρ+ω0 , L̂
∗
ω1

(S2
+ω1

) + L̂∗ω1
(S+ω1 )S+ω0 + S+ω0 L̂

∗
ω1

(S+ω1 ) + S2
+ω0
〉1ω1=ω]

all the quantities on the right-hand side being evaluated at ζ = 0.

The Onsager reciprocity relation Lων = Lνω holds. Moreover, the kinetic
coefficients are related to the covariance of the CLT in Theorem 4 by the
fluctuation–dissipation relation

Lων =
1

2β̄2
Cων .
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Linear Response
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Outlook
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Outlook

Achievements
Extension of the main results of [Bougron–Bruneau 2020] to random RIS driven by
Markov chains:
A pointwise ergodic theorem for abstract MRIS
Thermodynamics of MRIS under irreducibility: 1st and 2nd law, limit theorems for the full
statistics of entropy/heat.
Characterization of the vanishing of entropy production.
Detailed fluctuation theorem (à la Gallavotti–Cohen), including linear response, under
primitivity.

Open Questions
Derive a fluctuation theorem under less stringent assumptions
Investigate the possibility of occurrence of phase transitions (non-analyticity of the
cumulant generating function e(α)).
Find non-trivial examples of MRIS with vanishing entropy production, i.e., examples with
ρ+ω 6= ρ+ν for distinct ω, ν (or prove that they do not exist!).
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Thank You!
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