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Background I: Repeated Interactions

A “Quantum Markov” has been used and abused !

Quantum Markov chains: Wellens, Buchleitner, Kimmerer, Maassen (2000)
Continuous limit: Attal, Pautrat (2006)

Weak coupling: Attal, Joye (2007)

Long time asymptotics: Bruneau, Joye, Merkli (2006—2020)
Non-Markovian: Pellegrini, Petruccione (2009)

Metastability: Bruneau, P. (2009)

Random: Nechita, Pellegrini (2012), Bougron, Bruneau (2020)

Parameter estimation: Guta, Kiukas (2015)

CLT, large deviations: Guta, van Horssen (2015)
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Background II: Repeated Measurements . ..

...and Quantum Trajectories

N
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Barchielli, Belavkin (1991)

Kimmerer, Maassen (2000-)

Pellegrini (2009-)

Bauer, Benoist, Bernard, Tilloy (2011-)

Haroche et al., Wineland et al. (Nobel 2012)

Benoist, Cuneo, Jaksi¢, Pautrat, P. (2018-)

Benoist, Fraas, Pautrat, Pellegrini (2019)

Ballesteros, Benoist, Crawford, Fraas, Fréhlich, Schubnel (2020-)
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Abstract Setup

The Driving Classical Markov Chain

Finite state space Q.

Transition matrix P € R2* (right stochastic).

Probability vector = € R,

Markov chain w = (wn)nen € QN with probability measure
P(wo = lo, - - - s wk = k) = mjo Pigiy » = Py -

Left shift on QN: w = (wp, w1, ...) = o(w) = (w1, wa, .. .).

4
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Abstract Setup

The Driving Classical Markov Chain

o Finite state space Q.

o Transition matrix P € R?*9 (right stochastic).

o Probability vector m € R,

@ Markov chain w = (wn)ney € QN with probability measure
P(wo = lo, - - - s wk = k) = mjo Pigiy » = Py -

©

Left shift on QN: w = (wp, w1, ...) = o(w) = (w1, wa, .. .). )

The Quantum Machinery

System S with finite dimensional C*-algebra of observables A.
9 (pw)wean family of states on A.

0 (Lu)weaq family of CPTP maps on A..
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Abstract Setup

The Driving Classical Markov Chain
Finite state space Q.
Transition matrix P € R2*€ (right stochastic).
Probability vector = € R,
Markov chain w = (wn)nen € QY with probability measure

© 6 6 o

P(wo = io,...,wk = ik) = 71','0/3,'0,'1 ”'P"k—1"k'

©

Left shift on QN: w = (wp, w1, ...) = o(w) = (w1, wa, .. .). )

The Quantum Machinery

System S with finite dimensional C*-algebra of observables A.
9 (pw)wen family of states on A.
0 (Lu)wea family of CPTP maps on A..

The Random Dynamical System

pn(w) = ﬁwn ce Lw1pw0~

is a Markovian Repeated Interaction System (MRIS)
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A Feynman—Kac Formalism

o C*-algebra
A=A={Q5w— X(w) € A}
diagonal subalgebra of the full algebra of Q x Q matrices with entries in A
equipped with the trace

TeX = tX(w).

weN

Extended observables X € 2 depend on which reservoir S is interacting with.

o A, = A% with duality
W x AS (R, X) = (R X) = D (R(w), X(w))
weN

o Extended states R € 4, R(w) >0, TrR = 1.
@ Feynman-Kac CPTP map on 2.

(LR)(w) = > PuwluR(v)

veQ
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The Semigroup Structure

Rn(w) = Elpn(w) 1wy =w] = Elpn(w)lwnit = w]P(wni = w)

® tr An(w) = P(wpst = w) = (xP™ 1)y = 2+
© > An(w) = Elpn(w)]
weN
® An(w) = (L"Ro)(w)
© E[{pn(w), X(wns1)] = (L"Ro, X)

Proof. By elementary direct calculation.
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Extended Steady States

An extended state R, such that LR+ = R is called Extended Steady State (ESS). J

@ R, always exists, but may not be unique.

LoRy(w
Tiw = ttAt (w), Ptw = ¢7
T+w

o w4 P = m: the Markov chain started with 7. is stationary.
@ The repeated interaction process driven by this stationary chain and started with

p+ is stationary
Ei[(p4n(w), X(wns1)] = (Ry, X)

@ When unique, R+ convey important information on the large time asymptotics of
the process.
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Primitivity, Irreducibility

Definition

@ L is positivity improving if, forany R € 2., R>0 — LR > 0.

o L is primitive if L" is positivity improving for some n > 0.
o Lis irreducible if e is positivity improving for some t > 0.

The following are well known ([Evans, Hoegh-Krohn 1978])
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@ sp(L) is a subset of the closed unit disk containing 1, and the eigenspace
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Primitivity, Irreducibility

@ L is positivity improving if, forany R € 2., R>0 — LR > 0.
o L is primitive if L" is positivity improving for some n > 0.
o Lis irreducible if e is positivity improving for some t > 0.

The following are well known ([Evans, Hoegh-Krohn 1978])
@ sp(L) is a subset of the closed unit disk containing 1, and the eigenspace
associated to the eigenvalue 1 contains an extended steady state R..
o L is irreducible iff its eigenvalue 1 is simple. In this case, there is a unique
extended steady state R,. Moreover, R is faithful and for any R € 2.

1 n—1

~> (LR - (R1)RL)| = 1RO

k=0
as n — oo.
o L is primitive iff its simple eigenvalue 1 is gapped

A =max{|z||z e sp(L)\ {1}} < 1.
Moreover, forany R € 2. and ¢ > 0,
IL"R — (R, 1)R+| = [RIO((A +¢€)")
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Primitivity, Irreducibility

Set

L= wa[w

weQ
where 7 is a faithful probability vector, and note that £ is a CPTP map on A..
o L is positivity improving iff P and every L, are.
o If L is irreducible (resp. primitive), so are P and L.
o If Pis positivity improving, then L is irreducible (resp. primitive) iff £ is.

o If every L., is positivity improving, then LL is irreducible (resp. primitive) iff P is.
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Ergodic Theory of MRIS

N
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A Random Ergodic Theorem

[Beck—Schwartz 1957]

Let X be a reflexive Banach space and (S, X, m) a o-finite measure space. Let there
be defined on S a strongly measurable function Ts with values in the Banach space
B(X) of bounded linear operators on X. Suppose that || Ts|| < 1 for all s € S. Let h be
a measure-preserving transformation in (S, =, m). Then for each X € L'(S, m) there is
an X € L'(S, m) such that

.1 i 5
lim > TsTus) -~ Tim1(5X (M (8)) = X(s)
strongly in X, a.e.in S, and

X(s) = Ts(X(h(s)))

a.e. in S. Moreover, if m(S) < oo , then X is also the limit in the mean of order 1.
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A Pointwise Ergodic Theorem for MRIS (I)

Assumption (STAT) One of the two following conditions is satisfied:
o ris stationary: 7P = .
@ There exists a faithful stationary measure: 7 P = 7 > 0.

Under Assumption (STAT), for any X € 2, the limit

N—1
. 1 * * v
Nlll;noo N n§70 ‘Cw1 e ‘C'wnX(wa»‘]) = X(w)

exists P-almost surely and in L'(QY, P; 2). The limiting function is such that
£ (o)) = X ().
Moreover, the extended observable X € 2 defined by
X (w) = E[X(w)|wr = ],

satisfies :
=X.

i

L*
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A Pointwise Ergodic Theorem for MRIS (ll)

If L is irreducible, its unique ESS R; is faithful and for any X € 2l one has

X (w) = lim ch L8 X(wpr) = (R, X)1

N—oo N

for P-almost every w € Q and in L' (QY, P; 21). In particular, for any initial state (pw)wen

and any X € 2,
N—1

im 5> (pne), X(ni1)) = (Re, X)
n=0

holds P-almost surely and in L'(QN, P). Moreover, if L is primitive, then

Jim B [(pn(w), X(wns1))] = (R X).
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Thermodynamics of MRIS

From now on we assume more structure:

Lop =ty (Uolp® pe, )US)
with

Uw _ e_iTw(HS®1+1®ch+Vw)
and

pe, = e_ﬁw(HCw —Fw)
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The Heat Currents
o Energy dissipated during the n 4+ 1™ interaction

AQpii(w) =tr (pn(w) @ PCupy (U:;nﬂ chn+1 Uopyr — chn+1 )) = —(pn(w), J(wn+1))
with
J(w) = trage, (USlUw, He J(1 ® pe,,))-

@ Further setting
B 1 Q3w Suwd(v),

yields an extended observable J,, € 2l describing the energy transferred from
reservoir R, to the system S during a single interaction.
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The Heat Currents
Energy dissipated during the n 4+ 1™ interaction

AQpii(w) =tr (pn(w) @ PCupy (U:;nﬂ chn+1 Uopyr — chn+1 )) = —(pn(w), J(wn+1))
with
J(w) = trage, (USlUw, He J(1 ® pe,,))-

Further setting
B 1 Q3w Suwd(v),

yields an extended observable J,, € 2l describing the energy transferred from
reservoir R, to the system S during a single interaction.

Time-averaged quantum mechanical expectation of the heat extracted from
reservoir R, during a single interaction

N—1

Jo@) = Jim 1S (o), do 1))

n=0

If L is irreducible, P-a.s. B
Jv(w) = (R+, )
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Entropy Balance

o After nh interaction, the von Neumann entropy of S is
Slpn(w)] = —(pn(w), log pn(w))-
@ During the n + 1" interaction, this entropy decreases by
ASpi1(w) = Slen(w)] = Slpnt1(w)].
o Entropy balance
ASpi1(w) + e (@) = Bupy AQpir(w),

where, by definition, ep,,, 4 (w) is the entropy production associated with the
n + 1™ interaction.
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Entropy Balance

o After nh interaction, the von Neumann entropy of S is
Slpn(w)] = —(pn(w), log pn(w))-
@ During the n + 1" interaction, this entropy decreases by
ASpi1(w) = Slen(w)] = Slpnt1(w)].
o Entropy balance
ASp1(w) +eppy (@) = Bupy AQnpr (w),
where, by definition, ep,,, 4 (w) is the entropy production associated with the

n + 1™ interaction.
@ Recall: relative entropy of states is defined as

Ent(u|p) = (u,log pn — log p) > 0
with equality iff © = p.

P 1(62) = Bt (Ui (0n0) @ e, WUy, | ns1(@) © ) 20
implies Landauer’s bound
ASpiq(w)

AQ w) >
n+1( )7 /Bwn+1
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Thermodynamic Equilibrium

Time average of the entropy balance relation

Slpo(w)] — Slon(w + Zep -8 1
n YN

N veQ n:O

N—

yields, in the limit N — oo

p(w) = = 3 Bud(w)

veQ

), du(wni1))
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Thermodynamic Equilibrium

Time average of the entropy balance relation

Slpo(w)] — Slon(w
N Z epy(w

yields, in the limit N — oo , if L is irreducible,

(W) =~ 3 Budi(w) =

veQ

N—1

Z Bu Z {(pn(w), Ju(wni1))

veQ n=0

=Y Bu(Rs,do

veQ
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Thermodynamic Equilibrium

Time average of the entropy balance relation

N—1

Slpo(w)] — Slpn(w Zepn Z Bu Z (pn(w), J (wpi1))

N veQ n=0

yields, in the limit N — oo , if L is irreducible,

p(w) == Budo(w) == Bu(Re,dy

veQ veQ

Equilibrium means no heat currents = no entropy production

If L is irreducible, then ép,(w) = 0 holds P-a.s. iff the family of states (p+w)wean
satisfies
Uss (p1v ® pe, )US = ptw ® pe,,

for all v,w € Q such that P,,, > 0. In this case the entropy balance reads
S[p+wn+1] - S[/’+Wn] = ﬁwn+1 <P+Wn» J("Jn+1)> =0

P-a.s. and in particular
<R+a Jl/> =0

so that no heat currents <= no entropy production
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Full Statistics, Fluctuation Relations and Linear Response

N
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Full Statistics of Environmental Entropy
Repeated two-time measurement protocol: Entropy observable
Su=—- |0chw = Bw(HCW - Fw)
is measured before and after each interaction with C,, with outcome

E=(s¢)EX XX, > = sp(S.).
weN

24/36



Full Statistics of Environmental Entropy

Repeated two-time measurement protocol: Entropy observable
Su=— |0chw = Bw(HCW - Fw)

is measured before and after each interaction with C,, with outcome

E=(s¢)EX XX, > = sp(S.).
weN

Liders—Schwinger—Wigner formula
@(61 s £n|w) = (Lwn,én . '£w1 €4 Pwo Il>

with
Loep=e "ty (10 1gs,—y)Uu(p® Igs,—3)US))

gives the joint probability law of &1, . . ., &n after n interactions, conditioned on w.
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Full Statistics of Environmental Entropy

Repeated two-time measurement protocol: Entropy observable
Su=— |0chw = ﬁw(HCW - Fw)
is measured before and after each interaction with C,, with outcome

E=(s¢)EX XX, > = sp(S.).
weN

Liders—Schwinger—Wigner formula
@(61 s £n|w) = (Lwn,én . '£w1 €4 Pwo Il>

with
ijgp = efctrch ((]1 X ﬂ{swzgl})uw(p@) H{Swzq})U:z))

gives the joint probability law of &1, . . ., &n after n interactions, conditioned on w.

Q extends to a probability on (X x )Y, so we can make the following

The Full Statistics of Entropy is the probability measure
P(d€dw) = Q(dé|w)P(dw)

on(Z x X x QN
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Full Statistics of Environmental Entropy

Set 66 = ¢’ —cfor & = (,¢")

25/36



Full Statistics of Environmental Entropy

Setd¢ =< —cforé = (s,¢')

The total increase of the entropy of the reservoirs after N interactions is

N
In=Inp)veas  INg = D {wp—v}06n.
n=1
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Full Statistics of Environmental Entropy

Setd¢ =< —cforé = (s,¢')

The total increase of the entropy of the reservoirs after N interactions is

N
In=Inp)veas  INg = D {wp—v}06n.
n=1

E‘[gt] = Z e—a5§£w7§
EELXE

(LMR)w) = Y Pl R0) o= (aw)uen € B
veQ

#(er) = max{|A|| A € sp(LI*)}
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Limit Theorems ...

Theorem 4
@ Under Assumption (STAT), one has

. = [Zny -
im B[] = B, Bl(pug: T ()]
o If L is irreducible, then the weak law of large numbers holds, i.e., the limit

INV
lim —== = —3,(R+, ),
NL>moo N B<+ )

exists in probability.
o If L is irreducible, then the central limit theorem holds, i.e., as N — co

ﬁ <IN -E [IN]>

converges in law towards a centered Gaussian vector with covariance matrix
Cwu = ewu - ngl/»

where
by = (0a,£)(0), Luwr = (9ay O, £)(0).
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...and Large Deviation Principle

o If L is primitive, then the limit

1 ~
ela) = NIi_)moo N log E[e~ > ZN]

exists, defines a real analytic function. Moreover, for all o € R?,
e(a) = log {(cx).

o If L is primitive, then the sequence of random vectors (Zy)nen satisfies a
: for any Borel set G C R,

1 ~ (T
— inf [/ < liminf —logP | — G
inf 1(5) < fiminf 1 1ogP (T € 0)

1 ~ (T
< limsup — log P (—N € G) < —inf I(s),
N—soo N N seG

where G/G denote the interior/closure of G and the good rate function < > /(<) is
given by the Legendre-Fenchel transform of the function o — e(—a),

I(s) := sup (a-s—e(—a)).
a R
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Fluctuation Relations

A strong form of Fluctuation Relations [Gallavotti-Cohen (1995)] holds under

Assumption (TRI) The two following conditions are satisfied:

@ The driving Markov chain is reversible, i.e., satisfies the detailed
balance condition: for all w, v € €,

TwPuwy = T Puw

@ There are anti-unitary involutions 6 and 6., acting on Hs and #Hc¢,, ,
such that

OuHe, = He 0o, (08 0.)Uy = US(0® 0.)

forallw € Q.
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Fluctuation Relations

A strong form of Fluctuation Relations [Gallavotti-Cohen (1995)] holds under

Assumption (TRI) The two following conditions are satisfied:

@ The driving Markov chain is reversible, i.e., satisfies the detailed
balance condition: for all w, v € €,

TwPuwy = T Puw

@ There are anti-unitary involutions 6 and 6., acting on Hs and #Hc¢,, ,
such that

OuHe, = He 0o, (08 0.)Uy = US(0® 0.)

for all w € Q.

If L is primitive and Assumption (TRI) is satisfied, then the rate function governing the
large deviations of the entropy full statistics satisfies the

(=)= I(s) = > sw, (forallsceR?),
we

which is associated with the Gallavotti-Cohen symmetry (1 = (1,1,....1))

e(1—a)=e(a), (forallwcR?).
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Fluctuation Relations
The total entropy dumped in the environment after N interaction is

oN=D Nw=In-1
weQ

Under the Hypotheses of Theorem 5, the large deviation estimate
e o1 ~ soN . 1 ~ soN .
= — =24 — =24 < —
;22/(5) < Illvmlnf N |og]P’( N € S> < I|Nmsup N IogIP’( N € S)

holds with rate _
I(s) =inf{l(s)|s-1=s}

satisfying the Fluctuation Relation

The last relation can be loosely formulated as

P(O’N = —NS) - eiNS
[P’(U‘N = NS)

showing that negative values of entropy production are exponentially suppressed, a
strong form of the 2" Law of Thermodynamics.
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Linear Response

Fluctuation relations as far from equilibrium extensions of fluctuation—dissipation
relations (Green—Kubo, Onsager reciprocity) [Gallavotti (1996)].

Is there a notion of equilibrium for MRIS ?

Assumption (EQU) The three following conditions are satisfied:
o All reservoirs are at the same temperature: 3, = .
o L is irreducible with unique ESS R;..

@ Entropy production vanishes: > g B(R+,d) = 0.
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Linear Response

Under Assumption (EQU), let us perturb the reservoirs states

pC,.¢ = e~ (P=Cwlfe, —Fu0), ¢ = (Cw)wen € RY,

and denote by the subscript ¢ the correspondingly perturbed quantities. The following
is a strong form of the 1%t Law of Thermodynamics (energy conservation).

Under Assumption (EQU), L is irreducible. It is primitive whenever L is.
o ForPe ae.we QN

ZJVC(“’) R+C7 L/C)*O
veQ

o Under the law P¢ the limit
Jim fZ(ﬁ C) " Inye =0
veQ

holds in probability.
@ The Gaussian measure obtained in Theorem 4 as the limiting law of

1
VN
as N — oo is supported by the hyperplane 3¢ = {s| >, ca(B — ¢v) "o, =0}

(Tne — E¢[Zne)
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Linear Response

Theorem 6 Cont'd
Suppose in addition that IL is primitive.

@ The cumulant generating function has a translation symmetry: for all o € R® and
yeR B
ecla+187 ) =ecla), B =((B-¢w) Nuea:
@ The rate function of the large deviation principle of the full statistics of entropy
satisfies
le(s) = 400

for¢ ¢ 3¢.
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Linear Response
Set

LR+ (w)
tr Ry (w)’

Ju(w) = duntrc,, (UwHe, Ul — He, (1 ® pe,,))

St = —logptw = —log

Lup =tic, (Us(p® pe,,)Uw)

33/36



Linear Response
Set

LR+ (w)
tr Ry (w)’

Ju(w) = untre, (UoHe, Ul — He, )(1® pe,,))

St = —log ptw = —log

Lup =tic, (Us(p® pe,,)Uw)

Remark. If (TRI) holds and © : X — 6X6, then

J,=—-6J,, L,=0L,0

33/36



Linear Response

Set
LR+ (w)
tr Ry (w)’

Jy(w) = dutrc,, (UuHe, U — He, )1 ® pe,,)) .

St = —log ptw = —log

o If, in addition to the previous Assumptions (TRI) also holds, then the kinetic
coefficients
Loy = 8411 <R+<, Jw<> |C:0

are given by the Green-Kubo formula

1 g * *
Lov= 35 D B [{prwgs I (wo) L0, -+ Loydo (wii1)) + (w ¢ v)]
neN

0w Bl(prwg, Lo, (S20,) + L, (Steoy)Stwo + Stawn L, (Star) + S2 ) lwy=w]

all the quantities on the right-hand side being evaluated at ¢ = 0.

@ The Onsager reciprocity relation L., = L., holds. Moreover, the kinetic
coefficients are related to the covariance of the CLT in Theorem 4 by the
fluctuation—dissipation relation

1

qu = =5
2732

Cuv.
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Outlook

@ Achievements
o Extension of the main results of [Bougron—Bruneau 2020] to random RIS driven by
Markov chains:
o A pointwise ergodic theorem for abstract MRIS
Thermodynamics of MRIS under irreducibility: 1% and 2 law, limit theorems for the full
statistics of entropy/heat.
Characterization of the vanishing of entropy production.
Detailed fluctuation theorem (a la Gallavotti-Cohen), including linear response, under
primitivity.
@ Open Questions
o Derive a fluctuation theorem under less stringent assumptions
o Investigate the possibility of occurrence of phase transitions (non-analyticity of the
cumulant generating function e(cx)).
o Find non-trivial examples of MRIS with vanishing entropy production, i.e., examples with
p+w # pyo fordistinct w, v (or prove that they do not exist!).

[~}

e 0o
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	Introduction
	Setup
	Ergodic Theory of MRIS
	Thermodynamics of MRIS
	Full Statistics, Fluctuation Relations and Linear Response
	Outlook

