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Motivations — Irreversibility in Quantum Mechanics

Irreversibility vs Measurements

1927: Heisenberg “reduction of the wave function”

1927: Eddington “time’s arrow”

1932: von Neumann “quantum arrow of time”

1937: Landau-Lifschitz "quantum vs thermodynamic arrow of time

”

1963; Wigner ’causal vs statistical evolution”

1991: Zurek "environment = decoherence”
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Irreversibility vs Measurements

1927: Heisenberg “reduction of the wave function”

1927: Eddington “time’s arrow”

1932: von Neumann “quantum arrow of time”

1937: Landau-Lifschitz "quantum vs thermodynamic arrow of time

”

1963; Wigner ’causal vs statistical evolution”
1991: Zurek "environment = decoherence”

More recently: “statistical mechanics of repeated measurements”
Kimmerer-Maassen’'04, Barchielli-Gregoratti'09,
Bauer-Benoist-Bernard’11, Benoist-Pellegrini’14,
Ballesteros-Fraas-Fréhlich-Schubnel’16,...
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Other Motivations

Non-demolition measurements (Braginsky, ..., Haroche Nobel Prize 2012)
Finitely correlated states (Fannes, Nachtergaele, Werner 1992)

Novel class of dynamical systems with surprising properties

Subadditive thermodynamic formalism (Falconer, Barreira, Feng,... )
Non-Gibbsian measures in SM (Dobrushin, Shlosman, van Enter, ...)
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Other Motivations

Non-demolition measurements (Braginsky, ..., Haroche Nobel Prize 2012)
Finitely correlated states (Fannes, Nachtergaele, Werner 1992)

Novel class of dynamical systems with surprising properties

Subadditive thermodynamic formalism (Falconer, Barreira, Feng,... )
Non-Gibbsian measures in SM (Dobrushin, Shlosman, van Enter, ...)

Fluctuation relations for entropy production (not in this talk)
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Framework

Quantum Measurements & Quantum Instruments

@ Quantum system — H, dimH < oo
@ Observables — B(H), inner product (X, Y) = tr((X*Y)
o Possible outcomes of a single measurement — A = {ay,...,as}
@ Quantum instrument {®a}ac 4
o CP maps ¢, : B(H) = B(H)
o & =" d,satisfies o(/) = /

acA
o Duality (7 (X), Y) = (X, da(Y))

o Initial state p
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Framework

Quantum Measurements & Quantum Instruments )

@ Quantum system — H, dimH < co
@ Observables —» B(H), inner product (X, Y) = tr(X*Y)
o Possible outcomes of a single measurement — A = {ay,...,as}
@ Quantum instrument {®z} ac 4
o CPmaps ¢, : B(H) — B(H)
o &= o, satisfies d(/) = /

acA
o Duality (®3(X), Y) = (X, ®a(Y))

o Initial state p

Operation Rules

o Probability of outcome a € A — tr(P%(p))
®z(p)

o State after completion of measurement, conditioned on outcome a — ——~"—
tr(Pz(p))
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Framework

Quantum Measurements & Quantum Instruments

@ Quantum system — H, dimH < oo
@ Observables — B(H), inner product (X, Y) = tr((X*Y)
@ Possible outcomes of a single measurement — A = {ay,..., ar}
@ Quantum instrument {®a}ac 4
o CP maps ¢, : B(H) — B(H)
o & =) o, satisfies d(/) = /

acA
o Duality (®3(X), ¥) = (X, a(Y))

o Initial state p

Any quantum instrument has a (non-unique) Kraus representation

Oa(X) = > VapXVip,  03(X) = > Vi XVap
beB; beB,

Whenever such a representation exists with |B,| = 1 for all a € A, the instrument is
called perfect.
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Example 1

von Neumann Instrument == Projective Measurement )

@ Observable: A € B(H)

o Spectral decomposition: A=~ aPa, with A = sp(A)
ac A
@ Propagator from initial to measurement time: unitary U € B(H)

@ Instrument: ®5(X) = U* PaXPaU
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Example 1

von Neumann Instrument == Projective Measurement )

@ Observable: A € B(H)
o Spectral decomposition: A=~ aPa, with A = sp(A)
acA
@ Propagator from initial to measurement time: unitary U € B(H)
@ Instrument: ®5(X) = U* PaXPaU

Applying Operation Rules
@ Probability of outcome a € sp(A): tr(PaUpU*)
PaUpU*Pa

o State after completion of measurement: ————
P «(PaUpU*Pa)
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Example 1

von Neumann Instrument == Projective Measurement )

@ Observable: A € B(H)
o Spectral decomposition: A=~ aPa, with A = sp(A)
acA
@ Propagator from initial to measurement time: unitary U € B(H)
@ Instrument: ®5(X) = U* PaXPaU

Applying Operation Rules
@ Probability of outcome a € sp(A): tr(PaUpU*)
PaUpU*Pa

o State after completion of measurement: ————
P «(PaUpU*Pa)

Remark
von Neumann instruments are perfect.
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Example 2

General Instrument == Ancila Measurement

@ Probe == quantum system with finite dimensional Hilbert space #,
@ Initial state of the probe: pp
o Observable: A € B(Hp)
o Spectral decomposition: A= " aPa, with A = sp(A)

acA
o Propagator from initial to measurement time: unitary U € B(H ® Hp)
o Instrument: ®a(X) = try, (U* (X ® Pa)U(I ® pp))
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Example 2

General Instrument == Ancila Measurement J

@ Probe == quantum system with finite dimensional Hilbert space #,
@ Initial state of the probe: pp
o Observable: A € B(Hp)
o Spectral decomposition: A= " aPa, with A = sp(A)

acA
o Propagator from initial to measurement time: unitary U € B(H ® Hp)
o Instrument: ®a(X) = try, (U* (X ® Pa)U(I ® pp))

Applying Operation Rules
@ Probability of outcome a € sp(A): tr((/ ® Pa)Up ® ppU*)
r34, (1 ® Pa)Up @ ppU* (1 ® Pa))
tr((/ ® Pa)Up ® ppU*(1 ® Pa))

t
o State after completion of measurement:
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Example 2

General Instrument == Ancila Measurement

@ Probe == quantum system with finite dimensional Hilbert space #,
@ Initial state of the probe: pp
o Observable: A € B(Hp)
o Spectral decomposition: A= " aPa, with A = sp(A)

acA
o Propagator from initial to measurement time: unitary U € B(H ® Hp)
o Instrument: ®a(X) = try, (U* (X ® Pa)U(I ® pp))

Applying Operation Rules
@ Probability of outcome a € sp(A): tr((/ ® Pa)Up ® ppU*)
134, (1 ® Pa)Up ® ppU*(1 ® Pa))

t
o State after completion of measurement:
P w((/'® Pa)Up ® ppU (1 ® Pa))

Remark
Any quantum instrument on B(#) can be realized with an appropriate ancila.
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Repeating the same measurement

o After a first measurement with outcome wy, the system is in the state

%, (p)

P (@, (o)
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Repeating the same measurement

o After a first measurement with outcome wy, the system is in the state
%5 (n)
(%, (p))

@ The probability for the outcome of a second measurement to be w», conditioned
on the outcome of the 1st measurement is

tr(‘:l)jf]2 o &F, (p)
(%, (p))

Py

(P, (pur)) =

leaving the system in the state
®%, 095, (p)
tr(<I>:t,2 odx (p)

Pwiwy =
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Repeating the same measurement

o After a first measurement with outcome wy, the system is in the state
%5 (n)
(%, (p))

@ The probability for the outcome of a second measurement to be w», conditioned
on the outcome of the 1st measurement is

tr(‘:l)jf]2 o &F, (p)
(%, (p))

Py

(P, (pur)) =

leaving the system in the state
@5, 0 L, (p)
(P, o 8z, (p)
@ The joint probability for the outcome of the first two measurements is therefore
tr(<l>j;2 o &F, (p)
(P, (p))

Pwiwy =

(PG, (p) = u(®g, 0 &5, (0))
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Repeating the same measurement

o After a first measurement with outcome wy, the system is in the state
%5 (n)
(%, (p))

@ The probability for the outcome of a second measurement to be w», conditioned
on the outcome of the 1st measurement is

tr(‘:l)jf]2 o &F, (p)
(%, (p))

Py

(P, (pur)) =

leaving the system in the state
@5, 0 L, (p)
(P, o 8z, (p)
@ The joint probability for the outcome of the first two measurements is therefore
tr(<l>j;2 o &F, (p)
(P, (p))

@ The probability of a finite "quantum trajectory” w = (wy,...,wr) € AT is

Pwiwy =

(PG, (p) = u(®g, 0 &5, (0))

Pr(w) = t(®%, 0+ 0 ®f, 0 &%, (p))
(Luders-Schwinger-Wigner formula)
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Induced Classical Dynamical System

Pr(wr - wp) = (L ®%, -+ 05, p) = (®uy - Gurl,p)

Recall &(/) =/

o It implies

ST Brig(wr - wrr) = 3 (@05 -7, p) = Pr(wi -

veA veA
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Induced Classical Dynamical System

Pr(wr - wp) = (L ®%, -+ 05, p) = (®uy - Gurl,p)

Recall &(/) =/

o It implies

ST Brig(wr - wrr) = 3 (@05 -7, p) = Pr(wi -

veA veA

@ By Kolmogorov {P7} ¢ extends to a probability P on Q = AN
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Induced Classical Dynamical System

Pr(wr - wp) = (L ®%, -+ 05, p) = (®uy - Gurl,p)

Recall &(/) =/

o It implies

ST Brig(wr - wrr) = 3 (@05 -7, p) = Pr(wi -

veA veA

@ By Kolmogorov {P7} ¢ extends to a probability P on Q = AN
@ By Perron-Frobenius there exists a state py such that ®*(ps) = ps
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Induced Classical Dynamical System

Pr(wr -+ wr) = (8%, -+ 05, p) = (®uy -+ uyl,p)

Recall &(/) =/ )

o It implies

D Pripg(wi-wry) = D (P df - dF p) =Pr(w - wr)
veA veA

@ By Kolmogorov {P7} ¢ extends to a probability P on Q = AN
@ By Perron-Frobenius there exists a state py such that ®*(ps) = ps
@ Chosing pg as initial state

S Prig(vwrwr) = D (P Do, 05 pa) = Pr(ws -+ wr)
veA veEA
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Induced Classical Dynamical System

Pr(wr -+ wr) = (8%, -+ 05, p) = (®uy -+ uyl,p)

Recall &(/) =/

©

e o o

e o

It implies

D Pra(wrewrv) = Y (Sl L DL p) = Pr(ws -

veA veA

By Kolmogorov {P7}rcn extends to a probability P on Q = AN
By Perron-Frobenius there exists a state py such that *(ps) = pst
Chosing p« as initial state

S o Pria(vwrwr) =D (P Do, OFpa) = Pr(ws -

veA veA

P is invariant under the left shift 7 : wiws -+ - — wowz - -- 0N Q
Dynamical system (2, 7, P)
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The Rules of the Game

We consider the repeated measurement process described by the quantum
instrument {®a} ¢ 4 With initial state p under the following assumptions: J
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The Rules of the Game

We consider the repeated measurement process described by the quantum
instrument {®}2c 4 With initial state p under the following assumptions: J

Assumption A
p is faithful and invariant: p > 0, ®*(p) = p

Assumption B

& is irreducible, i.e., there is no proper projection P such that ®(P) > AP for some
A>0.
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The Rules of the Game

We consider the repeated measurement process described by the quantum
instrument {®}2c 4 With initial state p under the following assumptions: J

Assumption A
p is faithful and invariant: p > 0, ®*(p) = p

Assumption B

& is irreducible, i.e., there is no proper projection P such that ®(P) > AP for some
A>0.

Proposition

Under these assumptions the induced dynamical system (L, 7, P) is ergodic
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Entropies

o Basic quantities: the “entropy functions”
Qo>w— ST(OJ) = — IogPT(W1 .. "’JT)

and the Gibbs-Shannon entropies

Ent(Pr) = E[S7] = — > Pr(w)logPr(w)
we AT
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Entropies

o Basic quantities: the “entropy functions”
Qo>w— ST(w) = — IogPT(W1 .. 'WT)

and the Gibbs-Shannon entropies

Ent(Pr) = E[S7] = — > Pr(w)logPr(w)
we AT
Results from ergodic theory )

o Kolmogorov-Sinai: metric entropy of P w.r.t. the shift  is
1
h-(P) = _lim —Ent(P7) € [0, log|.A|]
T—oo T
@ Shannon-McMillan-Breiman:
1
lim =S = h (P
Jim = S7(w) = h (P)

for P-a.e. w € Qandin L'(Q,P)
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Beyond the Shannon-McMillan-Breiman theorem

o Large Deviations. Quantify fluctuations around the SMB-limit
lTST(w) — h.(P)

by a LDP
]
Py [7& N s} ~ e THO)
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Beyond the Shannon-McMillan-Breiman theorem

o Large Deviations. Quantify fluctuations around the SMB-limit
lTST(w) — h.(P)

by a LDP
]
Py [7& N s} ~ e THO)

o Multifractal Analysis. Fractal dimension of the level sets

Ls = {w € Q| TILm lTST(w) = s}
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Beyond the Shannon-McMillan-Breiman theorem

o Large Deviations. Quantify fluctuations around the SMB-limit
lTST(w) — h.(P)

by a LDP
]
Py [7& N s} ~ e THO)

o Multifractal Analysis. Fractal dimension of the level sets
Ls = QY i ! S =s
s=WE | Tl~>moo ? T(W) -

o Statistical Mechanics. Think of wq - - - w7t as a configuration of a spin chain. Look
at T — oo as a thermodynamic limit and develop the statistical mechanics of the
infinite volume spin system: phase transitions, long range order . ..
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Pressure == Rényi Entropy

weAT weAT

Pr(B) =log > Pr(w)’ =log D e PS5 J
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Pressure == Rényi Entropy

weAT weAT

Pr(B) =log > Pr(w)’ =log D e PS5 J

Theorem 1 [Thermodynamic formalism for g > 0]
@ For any Q € P,(Q) the following limit exists
1
§@) = jim 7 [ Sr(w)aw)
Q@ For 3 > 0 one has

p(B) = lim ~Pr(8)= sup (h:(Q) - Bs(Q))
T T
e QEP-(R)

which defines a differentiable function.
© For 8 > 0 there is a unique equilibrium measure Pz € P-(2) such that

p(B) = h-(Pg) — Bs(Pg)
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Subadditive Thermodynamic Formalism

@ Upper decoupling: Assumption (A) —-
Prir(ww') < py 'Pr(w)Pr (@)

with pg = min sp(p) = super-additivity
Sty > Sr+ Sy o7 +logpg

which suffices to prove existence of limits (Fekete’s Lemma).

o Lower decoupling: Assumption (B) = There is C > 0 and t, > 0 such that for
any finite words w, w’ one can find a word v of length L < t; such that

Priir(ww’) > CPr(w)Pr/ (o)

This yields differentiability of the limit and uniqueness of equilibrium measure

Thermodynamics of Repeated Quantum Measurements 14/23



Subadditive Thermodynamic Formalism

@ Upper decoupling: Assumption (A) —-
Prir(ww') < py 'Pr(w)Pr (@)

with pg = min sp(p) = super-additivity
Sty > Sr+ Sy o7 +logpg

which suffices to prove existence of limits (Fekete’s Lemma).

o Lower decoupling: Assumption (B) = There is C > 0 and t, > 0 such that for
any finite words w, w’ one can find a word v of length L < t; such that

Priir(ww’) > CPr(w)Pr/ (o)

This yields differentiability of the limit and uniqueness of equilibrium measure

Theorem 1 = local LDP and Multifractal Formalism for s €]p’(0+), p’(4+00)[. )
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What about 5 < 0?

@ Pressure R > 8 — p(B) «— Large Deviations (Gartner-Ellis)
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What about 5 < 0?

@ Pressure R > 8 — p(B) «— Large Deviations (Gartner-Ellis)

@ Suppose there is a basis of H and a Kraus representation of the ®, such that all
Kraus matrices have algebraic entries. Then p(8) < co forall 8 € R
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What about 5 < 0?

@ Pressure R > 8 — p(B) «— Large Deviations (Gartner-Ellis)

@ Suppose there is a basis of H and a Kraus representation of the ®, such that all
Kraus matrices have algebraic entries. Then p(8) < co forall 8 € R

0 H=C> A={-,0,+},p=1/2
o Let Ry be the rotation by 6, and P the projections on the standard basis of C2

do(X) = %RQXR;, b4 (X) = %PiXPi
o Fora.e. 0 € [0,2x], p(B) is finite for all 5 € R
o For adense set of 6, p(8) = +oo forall 8 < 0

Thermodynamics of Repeated Quantum Measurements

15/23



What about 5 < 0?

@ Pressure R > 8 — p(B) «— Large Deviations (Gartner-Ellis)

@ Suppose there is a basis of H and a Kraus representation of the ®, such that all
Kraus matrices have algebraic entries. Then p(8) < co forall 8 € R

0 H=C> A={-,0,+},p=1/2
o Let Ry be the rotation by 6, and P the projections on the standard basis of C2

1 1
do(X) = ERgXRg, b4 (X) = EPiXP:t

o Fora.e. 6 € [0, 2], p(B) is finite for all 3 € R
o For adense set of 0, p(3) = +oo forall 3 < 0

In general, there is no thermodynamic formalism for 5 < 0 J
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Main Results

@ LDP for the entropy function. For any Borel set

T—oo

1 1
7;21;: I(s) < I%—ETJ? log P {S—; € Z} < limsup T logP {8—73— € Z] < fsfgfi I(s)

holds with rate function /(s) = supgcr (8s — p(—5))
©Q Multifractal analysis of the entropy function.

/
Le£0 — dimyls= &)FS
log | A
O Level Il LDP. The empirical measures
T—1
KT =7 t(w)
v t=0
also satisfy the LDP with rate function
sup /vd@ — P(v)) if Q € Pr(Q)
I(Q) = { vec(Q) (
+00 otherwise

where P(v) = _lim — |og/ S vor'gp

Thermodynamics of Repeated Quantum Measurements

16/23



Example I: The Farey Instrument

0 €]0,2[ )
o H=C? A={0,1}
°
1 Xi1 + 0Xo2 0) 1 (Xﬂ 0 )
Po(X) = —— (X)) = ——
o(X) 2+6( 0 6 Xa2 1(X) 240\ 0 (2—0)X11 + 60X
°
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Example I: The Farey Instrument

0 €]0,2[ J

o H=C?% A={0,1}
o

1 Xi1+0X2 O 1 X11 0
®o(X) 210 ( 0 0X20 1(X) 240\ 0 (2-0)X11 +0Xz2

o Pis a matrix product state

Pr(wy--wr) = (2+0)""(1-0/2,0/2)Ms, -~ Moy G)

10 10
MO:(O a) M‘:<279 9)

where
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Example I: The Farey Instrument

0 1

@ R > B8+ p(B) is real analytic
@ P ~ equilibrium state of a spin system with exponentially decaying interactions

@ No phase transition!
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Example I: The Farey Instrument

0 #1
@ R > B8+ p(B) is real analytic

@ P ~ equilibrium state of a spin system with exponentially decaying interactions
@ No phase transition!

0 =1
@ ] —2,00[3 8 — p(B) is real analytic and strictly convex
@ ]| —00,2] 5 B — p(B) is affine
o P weak Gibbs for a continuous potential
@ 2nd order phase transition at 8 = —2
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Example I: The Farey Instrument

0 #1
@ R > B8+ p(B) is real analytic

@ P ~ equilibrium state of a spin system with exponentially decaying interactions
@ No phase transition!

0 =1
@ ] —2,00[3 8 — p(B) is real analytic and strictly convex
@ ]| —00,2] 5 B — p(B) is affine
o P weak Gibbs for a continuous potential
@ 2nd order phase transition at 8 = —2

Similar number theoretic spin chains have been extensively studied
in 1990-2010 [Knauf,Kleban-Ozluk,. .. ] J
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Example 2: The Erdos Instrument

o H :Czu-A: {07172}
o PP is again a matrix product state

PT(UJ1 ---wr) = 57T(1/271/2)MW1 "'MWT (::)

11 1.0 11
w=(o 1) M= 9 =0 1)

o PP is weak Gibbs with continuous potential

@ The pressure R 3 8 — p(3) is real analytic and strictly convex, except for a 1st
order phase transition at B € [—3, —2]

where
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Example 3: The Keep-Switch Instrument

o A perfect Kraus instrument: # = C2, A = {—, +}, ®4+(X) = VL XV}

V.- Vcosf  —sinf/2 Ve — —sinf/2 0
-7\ —sing/2 0 T —Veosf  —sing)2

@ Satisfies Assumptions (A) and (B) for 6 €]0, 7/2[
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Example 3: The Keep-Switch Instrument

o A perfect Kraus instrument: # = C2, A = {—, +}, ®4+(X) = VL XV}

V.- Vcosf  —sinf/2 Ve — —sinf/2 0
-7\ —sing/2 0 T —Veosf  —sing)2

@ Satisfies Assumptions (A) and (B) for 6 €]0, /2|
o Pressure and its derivative for 6 = 7 /3
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Example 3: The Keep-Switch Instrument

o A perfect Kraus instrument: # = C2, A = {—, +}, ®4+(X) = VL XV}

V.- Vcosf  —sinf/2 Ve — —sinf/2 0
-7\ —sing/2 0 T —Veosf  —sing)2

@ Satisfies Assumptions (A) and (B) for 6 €]0, /2|
o Pressure and its derivative for 6 = 7 /3

@ Non Gaussian central limit theorem as T — co
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Perspectives

@ Theory of 2 instruments: comparison/hypothesis testing (relative entropies),
fluctuation theorems. . .

@ Further develop the thermodynamic formalism for non-Gibbsian systems using
results from the subadditive ergodic theory.

o Investigate the physical meaning of phase transition beyond the failure of CLT.
Occurrence of anomalous scaling ?

@ Special measurements, e.g., thermal probes.

@ Continuous measurements/monitoring.

@ Many instruments, parameter estimation (under development)
o ...
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Papers

@ Benoist, Jaksi¢, Pautrat, P.: On entropy production of repeated quantum
measurements |: General Theory. Commun. Math. Phys. 2017

@ Cuneo, Jaksi¢, P, Shirikyan: Large deviations and fluctuation theorem for
selectively decoupled measures on shift spaces. Rev. Math. Phys. 2019

@ Benoist, Cuneo, Jaksi¢, P.: On entropy production of repeated quantum
measurements Il and Ill: Examples (soon on arXiv)

o ...
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Thank you !
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