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Motivations — Irreversibility in Quantum Mechanics

Irreversibility vs Measurements

1927: Heisenberg ”reduction of the wave function”

1927: Eddington ”time’s arrow”

1932: von Neumann ”quantum arrow of time”

1937: Landau-Lifschitz ”quantum vs thermodynamic arrow of time”

. . .

1963; Wigner ”causal vs statistical evolution”

. . .

1991: Zurek ”environment⇒ decoherence”

. . .

More recently: ”statistical mechanics of repeated measurements”
Kümmerer-Maassen’04, Barchielli-Gregoratti’09,
Bauer-Benoist-Bernard’11, Benoist-Pellegrini’14,
Ballesteros-Fraas-Fröhlich-Schubnel’16,...
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Kümmerer-Maassen’04, Barchielli-Gregoratti’09,
Bauer-Benoist-Bernard’11, Benoist-Pellegrini’14,
Ballesteros-Fraas-Fröhlich-Schubnel’16,...
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Other Motivations

Non-demolition measurements (Braginsky, ..., Haroche Nobel Prize 2012)

Finitely correlated states (Fannes, Nachtergaele, Werner 1992)

Novel class of dynamical systems with surprising properties

Subadditive thermodynamic formalism (Falconer, Barreira, Feng,... )

Non-Gibbsian measures in SM (Dobrushin, Shlosman, van Enter, ...)

Fluctuation relations for entropy production (not in this talk)
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Framework

Quantum Measurements & Quantum Instruments

Quantum system −→ H, dimH <∞
Observables −→ B(H), inner product 〈X ,Y 〉 = tr(X∗Y )

Possible outcomes of a single measurement −→ A = {a1, . . . , a`}
Quantum instrument {Φa}a∈A

CP maps Φa : B(H) → B(H)

Φ =
∑
a∈A

Φa satisfies Φ(I) = I

Duality 〈Φ∗a (X), Y 〉 = 〈X , Φa(Y )〉

Initial state ρ

, Thermodynamics of Repeated Quantum Measurements 5/23



Framework

Quantum Measurements & Quantum Instruments

Quantum system −→ H, dimH <∞
Observables −→ B(H), inner product 〈X ,Y 〉 = tr(X∗Y )

Possible outcomes of a single measurement −→ A = {a1, . . . , a`}
Quantum instrument {Φa}a∈A

CP maps Φa : B(H) → B(H)

Φ =
∑
a∈A

Φa satisfies Φ(I) = I

Duality 〈Φ∗a (X), Y 〉 = 〈X , Φa(Y )〉

Initial state ρ

Operation Rules
Probability of outcome a ∈ A −→ tr(Φ∗a (ρ))

State after completion of measurement, conditioned on outcome a −→
Φ∗a (ρ)

tr(Φ∗a (ρ))
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CP maps Φa : B(H) → B(H)

Φ =
∑
a∈A

Φa satisfies Φ(I) = I

Duality 〈Φ∗a (X), Y 〉 = 〈X , Φa(Y )〉

Initial state ρ

Remark
Any quantum instrument has a (non-unique) Kraus representation

Φa(X) =
∑

b∈Ba

Va,bXV∗a,b, Φ∗a (X) =
∑

b∈Ba

V∗a,bXVa,b

Whenever such a representation exists with |Ba| = 1 for all a ∈ A, the instrument is
called perfect.
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Example 1

von Neumann Instrument == Projective Measurement

Observable: A ∈ B(H)

Spectral decomposition: A =
∑
a∈A

aPa, with A = sp(A)

Propagator from initial to measurement time: unitary U ∈ B(H)

Instrument: Φa(X) = U∗PaXPaU

Applying Operation Rules
Probability of outcome a ∈ sp(A): tr(PaUρU∗)

State after completion of measurement:
PaUρU∗Pa

tr(PaUρU∗Pa)

Remark
von Neumann instruments are perfect.
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Example 2

General Instrument == Ancila Measurement

Probe == quantum system with finite dimensional Hilbert space Hp

Initial state of the probe: ρp

Observable: A ∈ B(Hp)

Spectral decomposition: A =
∑
a∈A

aPa, with A = sp(A)

Propagator from initial to measurement time: unitary U ∈ B(H⊗Hp)

Instrument: Φa(X) = trHp (U∗(X ⊗ Pa)U(I ⊗ ρp))

Applying Operation Rules
Probability of outcome a ∈ sp(A): tr((I ⊗ Pa)Uρ⊗ ρpU∗)

State after completion of measurement:
trHp ((1⊗ Pa)Uρ⊗ ρpU∗(1⊗ Pa))

tr((I ⊗ Pa)Uρ⊗ ρpU∗(1⊗ Pa))

Remark
Any quantum instrument on B(H) can be realized with an appropriate ancila.

, Thermodynamics of Repeated Quantum Measurements 7/23



Example 2

General Instrument == Ancila Measurement

Probe == quantum system with finite dimensional Hilbert space Hp

Initial state of the probe: ρp

Observable: A ∈ B(Hp)

Spectral decomposition: A =
∑
a∈A

aPa, with A = sp(A)

Propagator from initial to measurement time: unitary U ∈ B(H⊗Hp)

Instrument: Φa(X) = trHp (U∗(X ⊗ Pa)U(I ⊗ ρp))

Applying Operation Rules
Probability of outcome a ∈ sp(A): tr((I ⊗ Pa)Uρ⊗ ρpU∗)

State after completion of measurement:
trHp ((1⊗ Pa)Uρ⊗ ρpU∗(1⊗ Pa))

tr((I ⊗ Pa)Uρ⊗ ρpU∗(1⊗ Pa))

Remark
Any quantum instrument on B(H) can be realized with an appropriate ancila.

, Thermodynamics of Repeated Quantum Measurements 7/23



Example 2

General Instrument == Ancila Measurement

Probe == quantum system with finite dimensional Hilbert space Hp

Initial state of the probe: ρp

Observable: A ∈ B(Hp)

Spectral decomposition: A =
∑
a∈A

aPa, with A = sp(A)

Propagator from initial to measurement time: unitary U ∈ B(H⊗Hp)

Instrument: Φa(X) = trHp (U∗(X ⊗ Pa)U(I ⊗ ρp))

Applying Operation Rules
Probability of outcome a ∈ sp(A): tr((I ⊗ Pa)Uρ⊗ ρpU∗)

State after completion of measurement:
trHp ((1⊗ Pa)Uρ⊗ ρpU∗(1⊗ Pa))

tr((I ⊗ Pa)Uρ⊗ ρpU∗(1⊗ Pa))

Remark
Any quantum instrument on B(H) can be realized with an appropriate ancila.

, Thermodynamics of Repeated Quantum Measurements 7/23



Repeating the same measurement

After a first measurement with outcome ω1, the system is in the state

ρω1 =
Φ∗ω1

(ρ)

tr(Φ∗ω1
(ρ))

The probability for the outcome of a second measurement to be ω2, conditioned
on the outcome of the 1st measurement is

tr(Φ∗ω2
(ρω1 )) =

tr(Φ∗ω2
◦ Φ∗ω1

(ρ))

tr(Φ∗ω1
(ρ))

leaving the system in the state

ρω1ω2 =
Φ∗ω2
◦ Φ∗ω1

(ρ)

tr(Φ∗ω2
◦ Φ∗ω1

(ρ))

The joint probability for the outcome of the first two measurements is therefore

tr(Φ∗ω2
◦ Φ∗ω1

(ρ))

tr(Φ∗ω1
(ρ))

tr(Φ∗ω1
(ρ)) = tr(Φ∗ω2

◦ Φ∗ω1
(ρ))

The probability of a finite ”quantum trajectory” ω = (ω1, . . . , ωT ) ∈ AT is

PT (ω) = tr(Φ∗ωT
◦ · · · ◦ Φ∗ω2

◦ Φ∗ω1
(ρ))

(Lüders-Schwinger-Wigner formula)
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Induced Classical Dynamical System

PT (ω1 · · ·ωT ) = 〈I,Φ∗ωT
· · ·Φ∗ω1

ρ〉 = 〈Φω1 · · ·ΦωT I, ρ〉

Recall Φ(I) = I

It implies∑
ν∈A

PT +1(ω1 · · ·ωT ν) =
∑
ν∈A
〈Φν I,Φ∗ωT

· · ·Φ∗ω1
ρ〉 = PT (ω1 · · ·ωT )

By Kolmogorov {PT }T∈N extends to a probability P on Ω = AN

By Perron-Frobenius there exists a state ρst such that Φ∗(ρst) = ρst

Chosing ρst as initial state∑
ν∈A

PT +1(νω1 · · ·ωT ) =
∑
ν∈A
〈Φω1 · · ·ΦωT I,Φ∗νρst〉 = PT (ω1 · · ·ωT )

P is invariant under the left shift τ : ω1ω2 · · · 7→ ω2ω3 · · · on Ω

Dynamical system (Ω, τ,P)

, Thermodynamics of Repeated Quantum Measurements 9/23



Induced Classical Dynamical System

PT (ω1 · · ·ωT ) = 〈I,Φ∗ωT
· · ·Φ∗ω1

ρ〉 = 〈Φω1 · · ·ΦωT I, ρ〉

Recall Φ(I) = I

It implies∑
ν∈A

PT +1(ω1 · · ·ωT ν) =
∑
ν∈A
〈Φν I,Φ∗ωT

· · ·Φ∗ω1
ρ〉 = PT (ω1 · · ·ωT )

By Kolmogorov {PT }T∈N extends to a probability P on Ω = AN

By Perron-Frobenius there exists a state ρst such that Φ∗(ρst) = ρst

Chosing ρst as initial state∑
ν∈A

PT +1(νω1 · · ·ωT ) =
∑
ν∈A
〈Φω1 · · ·ΦωT I,Φ∗νρst〉 = PT (ω1 · · ·ωT )

P is invariant under the left shift τ : ω1ω2 · · · 7→ ω2ω3 · · · on Ω

Dynamical system (Ω, τ,P)

, Thermodynamics of Repeated Quantum Measurements 9/23



Induced Classical Dynamical System

PT (ω1 · · ·ωT ) = 〈I,Φ∗ωT
· · ·Φ∗ω1

ρ〉 = 〈Φω1 · · ·ΦωT I, ρ〉

Recall Φ(I) = I

It implies∑
ν∈A

PT +1(ω1 · · ·ωT ν) =
∑
ν∈A
〈Φν I,Φ∗ωT

· · ·Φ∗ω1
ρ〉 = PT (ω1 · · ·ωT )

By Kolmogorov {PT }T∈N extends to a probability P on Ω = AN

By Perron-Frobenius there exists a state ρst such that Φ∗(ρst) = ρst

Chosing ρst as initial state∑
ν∈A

PT +1(νω1 · · ·ωT ) =
∑
ν∈A
〈Φω1 · · ·ΦωT I,Φ∗νρst〉 = PT (ω1 · · ·ωT )

P is invariant under the left shift τ : ω1ω2 · · · 7→ ω2ω3 · · · on Ω

Dynamical system (Ω, τ,P)

, Thermodynamics of Repeated Quantum Measurements 9/23



Induced Classical Dynamical System

PT (ω1 · · ·ωT ) = 〈I,Φ∗ωT
· · ·Φ∗ω1

ρ〉 = 〈Φω1 · · ·ΦωT I, ρ〉

Recall Φ(I) = I

It implies∑
ν∈A

PT +1(ω1 · · ·ωT ν) =
∑
ν∈A
〈Φν I,Φ∗ωT

· · ·Φ∗ω1
ρ〉 = PT (ω1 · · ·ωT )

By Kolmogorov {PT }T∈N extends to a probability P on Ω = AN

By Perron-Frobenius there exists a state ρst such that Φ∗(ρst) = ρst

Chosing ρst as initial state∑
ν∈A

PT +1(νω1 · · ·ωT ) =
∑
ν∈A
〈Φω1 · · ·ΦωT I,Φ∗νρst〉 = PT (ω1 · · ·ωT )

P is invariant under the left shift τ : ω1ω2 · · · 7→ ω2ω3 · · · on Ω

Dynamical system (Ω, τ,P)

, Thermodynamics of Repeated Quantum Measurements 9/23



Induced Classical Dynamical System

PT (ω1 · · ·ωT ) = 〈I,Φ∗ωT
· · ·Φ∗ω1

ρ〉 = 〈Φω1 · · ·ΦωT I, ρ〉

Recall Φ(I) = I

It implies∑
ν∈A

PT +1(ω1 · · ·ωT ν) =
∑
ν∈A
〈Φν I,Φ∗ωT

· · ·Φ∗ω1
ρ〉 = PT (ω1 · · ·ωT )

By Kolmogorov {PT }T∈N extends to a probability P on Ω = AN

By Perron-Frobenius there exists a state ρst such that Φ∗(ρst) = ρst

Chosing ρst as initial state∑
ν∈A

PT +1(νω1 · · ·ωT ) =
∑
ν∈A
〈Φω1 · · ·ΦωT I,Φ∗νρst〉 = PT (ω1 · · ·ωT )

P is invariant under the left shift τ : ω1ω2 · · · 7→ ω2ω3 · · · on Ω

Dynamical system (Ω, τ,P)

, Thermodynamics of Repeated Quantum Measurements 9/23



The Rules of the Game

We consider the repeated measurement process described by the quantum
instrument {Φa}a∈A with initial state ρ under the following assumptions:

Assumption A
ρ is faithful and invariant: ρ > 0, Φ∗(ρ) = ρ

Assumption B
Φ is irreducible, i.e., there is no proper projection P such that Φ(P) ≥ λP for some
λ > 0.

Proposition
Under these assumptions the induced dynamical system (Ω, τ,P) is ergodic
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Entropies

Basic quantities: the “entropy functions”

Ω 3 ω 7→ ST (ω) = − log PT (ω1 · · ·ωT )

and the Gibbs-Shannon entropies

Ent(PT ) = E[ST ] = −
∑
ω∈AT

PT (ω) log PT (ω)

Results from ergodic theory

Kolmogorov-Sinai: metric entropy of P w.r.t. the shift τ is

hτ (P) = lim
T→∞

1
T

Ent(PT ) ∈ [0, log |A|]

Shannon-McMillan-Breiman:

lim
T→∞

1
T

ST (ω) = hτ (P)

for P-a.e. ω ∈ Ω and in L1(Ω,P)
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Beyond the Shannon-McMillan-Breiman theorem

Large Deviations. Quantify fluctuations around the SMB-limit

1
T

ST (ω) −→ hτ (P)

by a LDP

PT

[
1
T

ST ∼ s
]
∼ e−T I(s)

Multifractal Analysis. Fractal dimension of the level sets

Ls =

{
ω ∈ Ω | lim

T→∞

1
T

ST (ω) = s
}

Statistical Mechanics. Think of ω1 · · ·ωT as a configuration of a spin chain. Look
at T →∞ as a thermodynamic limit and develop the statistical mechanics of the
infinite volume spin system: phase transitions, long range order . . .
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Pressure == Rényi Entropy

PT (β) = log
∑
ω∈AT

PT (ω)β = log
∑
ω∈AT

e−βST (ω)

Theorem 1 [Thermodynamic formalism for β > 0]
1 For any Q ∈ Pτ (Ω) the following limit exists

ς(Q) = lim
t→∞

1
T

∫
ST (ω)dQ(ω)

2 For β > 0 one has

p(β) = lim
T→∞

1
T

PT (β) = sup
Q∈Pτ (Ω)

(hτ (Q)− βς(Q))

which defines a differentiable function.
3 For β > 0 there is a unique equilibrium measure Pβ ∈ Pτ (Ω) such that

p(β) = hτ (Pβ)− βς(Pβ)
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Subadditive Thermodynamic Formalism

Upper decoupling: Assumption (A) =⇒

PT +T ′ (ωω
′) ≤ ρ−1

0 PT (ω)PT ′ (ω
′)

with ρ0 = min sp(ρ) =⇒ super-additivity

ST +T ′ ≥ ST + ST ′ ◦ τT + log ρ0

which suffices to prove existence of limits (Fekete’s Lemma).

Lower decoupling: Assumption (B) =⇒ There is C > 0 and tl > 0 such that for
any finite words ω, ω′ one can find a word ν of length L ≤ tl such that

PT +L+T ′ (ωνω
′) ≥ CPT (ω)PT ′ (ω

′)

This yields differentiability of the limit and uniqueness of equilibrium measure

Theorem 1 =⇒ local LDP and Multifractal Formalism for s ∈]p′(0+), p′(+∞)[.
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What about β < 0?

Pressure R 3 β 7→ p(β)←→ Large Deviations (Gärtner-Ellis)

Suppose there is a basis of H and a Kraus representation of the Φa such that all
Kraus matrices have algebraic entries. Then p(β) <∞ for all β ∈ R

H = C2, A = {−, 0,+}, ρ = I/2

Let Rθ be the rotation by θ, and P± the projections on the standard basis of C2

Φ0(X) =
1
2

RθXR∗θ , Φ±(X) =
1
2

P±XP±

For a.e. θ ∈ [0, 2π], p(β) is finite for all β ∈ R
For a dense set of θ, p(β) = +∞ for all β < 0

In general, there is no thermodynamic formalism for β < 0
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Main Results

Theorem II
1 LDP for the entropy function. For any Borel set Σ

− inf
s∈Σ̇

I(s) ≤ lim inf
T→∞

1
T

log P
[

ST

T
∈ Σ

]
≤ lim sup

T→∞

1
T

log P
[

ST

T
∈ Σ

]
≤ − inf

s∈Σ̄
I(s)

holds with rate function I(s) = supβ∈R (βs − p(−β))

2 Multifractal analysis of the entropy function.

Ls 6= ∅ =⇒ dimH Ls =
I(s) + s
log |A|

3 Level II LDP. The empirical measures

µωT =
1
T

T−1∑
t=0

δτ t (ω)

also satisfy the LDP with rate function

I(Q) =

 sup
v∈C(Ω)

(∫
vdQ− P(v)

)
if Q ∈ Pτ (Ω)

+∞ otherwise

where P(v) = lim
T→∞

1
T

log

∫
e
∑T−1

t=0 v◦τ t
dP
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Example I: The Farey Instrument

θ ∈]0, 2[

H = C2, A = {0, 1}

Φ0(X) =
1

2 + θ

(
X11 + θX22 0

0 θX22

)
Φ1(X) =

1
2 + θ

(
X11 0
0 (2− θ)X11 + θX22

)

ρ =

(
1− θ

2 0
0 θ

2

)

P is a matrix product state

PT (ω1 · · ·ωT ) = (2 + θ)−T (1− θ/2, θ/2)Mω1 · · ·MωT

(
1
1

)
where

M0 =

(
1 θ
0 θ

)
M1 =

(
1 0

2− θ θ

)
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Example I: The Farey Instrument

θ 6= 1
R 3 β 7→ p(β) is real analytic

P ∼ equilibrium state of a spin system with exponentially decaying interactions

No phase transition!

θ = 1
]− 2,∞[3 β 7→ p(β) is real analytic and strictly convex

]−∞, 2] 3 β 7→ p(β) is affine

P weak Gibbs for a continuous potential

2nd order phase transition at β = −2

Similar number theoretic spin chains have been extensively studied
in 1990–2010 [Knauf,Kleban-Ozluk,. . . ]
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Example 2: The Erdös Instrument

H = C2, A = {0, 1, 2}
P is again a matrix product state

PT (ω1 · · ·ωT ) = 5−T (1/2, 1/2)Mω1 · · ·MωT

(
1
1

)
where

M0 =

(
1 1
0 1

)
M1 =

(
1 0
1 1

)
M2 =

(
1 1
1 1

)
P is weak Gibbs with continuous potential

The pressure R 3 β 7→ p(β) is real analytic and strictly convex, except for a 1st
order phase transition at βcrit ∈ [−3,−2]
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Example 3: The Keep-Switch Instrument

A perfect Kraus instrument: H = C2, A = {−,+}, Φ±(X) = V±XV∗±

V− =

( √
cos θ − sin θ/2

− sin θ/2 0

)
, V+ =

(
− sin θ/2 0
−
√

cos θ − sin θ/2

)
Satisfies Assumptions (A) and (B) for θ ∈]0, π/2[

Pressure and its derivative for θ = π/3

-4 -2 2 4

2

4

6

Non Gaussian central limit theorem as T →∞
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Perspectives

Theory of 2 instruments: comparison/hypothesis testing (relative entropies),
fluctuation theorems. . .

Further develop the thermodynamic formalism for non-Gibbsian systems using
results from the subadditive ergodic theory.

Investigate the physical meaning of phase transition beyond the failure of CLT.
Occurrence of anomalous scaling ?

Special measurements, e.g., thermal probes.

Continuous measurements/monitoring.

Many instruments, parameter estimation (under development)

. . .
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Papers

Benoist, Jakšić, Pautrat, P.: On entropy production of repeated quantum
measurements I: General Theory. Commun. Math. Phys. 2017

Cuneo, Jakšić, P., Shirikyan: Large deviations and fluctuation theorem for
selectively decoupled measures on shift spaces. Rev. Math. Phys. 2019

Benoist, Cuneo, Jakšić, P.: On entropy production of repeated quantum
measurements II and III: Examples (soon on arXiv)

...
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Thank you !
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