Thermodynamics of Repeated Quantum Measurements

Joint work with Tristan Benoist (Toulouse), Noé Cuneo (Paris 7) Vojkan Jakšić (McGill), Yan Pautrat (Orsay), Armen Shirikyan (Cergy)

Stochastic and Analytic Methods in Mathematical Physics

Yerevan, Armenia, September 2-7, 2019

Motivations — Irreversibility in Quantum Mechanics

Irreversibility vs Measurements

- 1927: Heisenberg "reduction of the wave function"
- 1927: Eddington "time's arrow"
- 1932: von Neumann "quantum arrow of time"
- 1937: Landau-Lifschitz "quantum vs thermodynamic arrow of time"
- ...
- 1963; Wigner "causal vs statistical evolution"
- ...
- 1991: Zurek "environment ⇒ decoherence"
- ...

Motivations — Irreversibility in Quantum Mechanics

Irreversibility vs Measurements

- 1927: Heisenberg "reduction of the wave function"
- 1927: Eddington "time's arrow"
- 1932: von Neumann "quantum arrow of time"
- 1937: Landau-Lifschitz "quantum vs thermodynamic arrow of time"

• ...

- 1963; Wigner "causal vs statistical evolution"
- . . .
- 1991: Zurek "environment ⇒ decoherence"
- ...
- More recently: "statistical mechanics of repeated measurements" Kümmerer-Maassen'04, Barchielli-Gregoratti'09, Bauer-Benoist-Bernard'11, Benoist-Pellegrini'14, Ballesteros-Fraas-Fröhlich-Schubnel'16,...

Other Motivations

- Non-demolition measurements (Braginsky, ..., Haroche Nobel Prize 2012)
- Finitely correlated states (Fannes, Nachtergaele, Werner 1992)
- Novel class of dynamical systems with surprising properties
- Subadditive thermodynamic formalism (Falconer, Barreira, Feng,...)
- Non-Gibbsian measures in SM (Dobrushin, Shlosman, van Enter, ...)

Other Motivations

- Non-demolition measurements (Braginsky, ..., Haroche Nobel Prize 2012)
- Finitely correlated states (Fannes, Nachtergaele, Werner 1992)
- Novel class of dynamical systems with surprising properties
- Subadditive thermodynamic formalism (Falconer, Barreira, Feng,...)
- Non-Gibbsian measures in SM (Dobrushin, Shlosman, van Enter, ...)

• Fluctuation relations for entropy production (not in this talk)

Framework

Quantum Measurements & Quantum Instruments

- Quantum system $\longrightarrow \mathcal{H}, \dim \mathcal{H} < \infty$
- Observables $\longrightarrow \mathcal{B}(\mathcal{H})$, inner product $\langle X, Y \rangle = tr(X^*Y)$
- Possible outcomes of a single measurement $\longrightarrow \mathcal{A} = \{a_1, \dots, a_\ell\}$
- Quantum instrument {Φ_a}_{a∈A}
 - CP maps $\Phi_a : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$

•
$$\Phi = \sum_{a \in \mathcal{A}} \Phi_a$$
 satisfies $\Phi(I) = I$

• Duality
$$\langle \Phi_a^*(X), Y \rangle = \langle X, \Phi_a(Y) \rangle$$

• Initial state ρ

Framework

Quantum Measurements & Quantum Instruments

- Quantum system $\longrightarrow \mathcal{H}, \dim \mathcal{H} < \infty$
- Observables $\longrightarrow \mathcal{B}(\mathcal{H})$, inner product $\langle X, Y \rangle = \operatorname{tr}(X^*Y)$
- Possible outcomes of a single measurement $\longrightarrow \mathcal{A} = \{a_1, \dots, a_\ell\}$
- Quantum instrument {Φ_a}_{a∈A}
 - CP maps $\Phi_a : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$
 - $\Phi = \sum_{a \in A} \Phi_a$ satisfies $\Phi(I) = I$
 - Duality $\langle \Phi_a^*(X), Y \rangle = \langle X, \Phi_a(Y) \rangle$
- Initial state ρ

Operation Rules

- Probability of outcome a ∈ A → tr(Φ^{*}_a(ρ))
- State after completion of measurement, conditioned on outcome $a \longrightarrow \frac{\Phi_a^*(\rho)}{\operatorname{tr}(\Phi_a^*(\rho))}$

Framework

Quantum Measurements & Quantum Instruments

- Quantum system $\longrightarrow \mathcal{H}$, dim $\mathcal{H} < \infty$
- Observables $\longrightarrow \mathcal{B}(\mathcal{H})$, inner product $\langle X, Y \rangle = tr(X^*Y)$
- Possible outcomes of a single measurement $\longrightarrow \mathcal{A} = \{a_1, \dots, a_\ell\}$
- Quantum instrument $\{\Phi_a\}_{a \in \mathcal{A}}$
 - CP maps $\Phi_a : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$

•
$$\Phi = \sum_{a \in \mathcal{A}} \Phi_a$$
 satisfies $\Phi(I) = I$

• Duality
$$\langle \Phi_a^*(X), Y \rangle = \langle X, \Phi_a(Y) \rangle$$

• Initial state ρ

Remark

Any quantum instrument has a (non-unique) Kraus representation

$$\Phi_a(X) = \sum_{b \in \mathcal{B}_a} V_{a,b} X V_{a,b}^*, \qquad \Phi_a^*(X) = \sum_{b \in \mathcal{B}_a} V_{a,b}^* X V_{a,b}$$

Whenever such a representation exists with $|\mathcal{B}_a| = 1$ for all $a \in \mathcal{A}$, the instrument is called perfect.

von Neumann Instrument == Projective Measurement

- Observable: $A \in \mathcal{B}(\mathcal{H})$
- Spectral decomposition: $A = \sum_{a \in A} aP_a$, with $\mathcal{A} = \operatorname{sp}(A)$
- Propagator from initial to measurement time: unitary $U \in \mathcal{B}(\mathcal{H})$
- Instrument: $\Phi_a(X) = U^* P_a X P_a U$

von Neumann Instrument == Projective Measurement

- Observable: $A \in \mathcal{B}(\mathcal{H})$
- Spectral decomposition: $A = \sum_{a \in A} aP_a$, with $\mathcal{A} = \operatorname{sp}(A)$
- Propagator from initial to measurement time: unitary $U \in \mathcal{B}(\mathcal{H})$
- Instrument: $\Phi_a(X) = U^* P_a X P_a U$

Applying Operation Rules

- Probability of outcome $a \in sp(A)$: tr($P_a U \rho U^*$)
- State after completion of measurement: $\frac{P_a U_{\rho} U^* P_a}{\operatorname{tr}(P_a U_{\rho} U^* P_a)}$

von Neumann Instrument == Projective Measurement

- Observable: $A \in \mathcal{B}(\mathcal{H})$
- Spectral decomposition: $A = \sum_{a \in A} aP_a$, with $\mathcal{A} = \operatorname{sp}(A)$
- Propagator from initial to measurement time: unitary $U \in \mathcal{B}(\mathcal{H})$
- Instrument: $\Phi_a(X) = U^* P_a X P_a U$

Applying Operation Rules

- Probability of outcome $a \in sp(A)$: tr($P_a U \rho U^*$)
- State after completion of measurement: $\frac{P_a U_{\rho} U^* P_a}{\operatorname{tr}(P_a U_{\rho} U^* P_a)}$

Remark

von Neumann instruments are perfect.

General Instrument == Ancila Measurement

- Probe == quantum system with finite dimensional Hilbert space \mathcal{H}_p
- Initial state of the probe: ρ_p
- Observable: $A \in \mathcal{B}(\mathcal{H}_p)$
- Spectral decomposition: $A = \sum_{a \in A} aP_a$, with $\mathcal{A} = \operatorname{sp}(A)$
- Propagator from initial to measurement time: unitary $U \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H}_p)$
- Instrument: $\Phi_a(X) = \operatorname{tr}_{\mathcal{H}_p}(U^*(X \otimes P_a)U(I \otimes \rho_p))$

General Instrument == Ancila Measurement

- Probe == quantum system with finite dimensional Hilbert space \mathcal{H}_p
- Initial state of the probe: ρ_p
- Observable: $A \in \mathcal{B}(\mathcal{H}_p)$
- Spectral decomposition: $A = \sum_{a \in A} aP_a$, with $A = \operatorname{sp}(A)$
- Propagator from initial to measurement time: unitary $U \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H}_p)$
- Instrument: $\Phi_a(X) = \operatorname{tr}_{\mathcal{H}_p}(U^*(X \otimes P_a)U(I \otimes \rho_p))$

Applying Operation Rules

- Probability of outcome $a \in sp(A)$: tr($(I \otimes P_a)U\rho \otimes \rho_p U^*$)
- State after completion of measurement: $\frac{\operatorname{tr}_{\mathcal{H}_p}((1 \otimes P_a)U\rho \otimes \rho_p U^*(1 \otimes P_a))}{\operatorname{tr}((I \otimes P_a)U\rho \otimes \rho_p U^*(1 \otimes P_a))}$

General Instrument == Ancila Measurement

- Probe == quantum system with finite dimensional Hilbert space \mathcal{H}_p
- Initial state of the probe: ρ_p
- Observable: $A \in \mathcal{B}(\mathcal{H}_p)$
- Spectral decomposition: $A = \sum_{a \in A} aP_a$, with $\mathcal{A} = \operatorname{sp}(A)$
- Propagator from initial to measurement time: unitary $U \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H}_p)$
- Instrument: $\Phi_a(X) = \operatorname{tr}_{\mathcal{H}_p}(U^*(X \otimes P_a)U(I \otimes \rho_p))$

Applying Operation Rules

- Probability of outcome $a \in sp(A)$: tr($(I \otimes P_a)U\rho \otimes \rho_p U^*$)
- State after completion of measurement: $\frac{\operatorname{tr}_{\mathcal{H}_p}((1 \otimes P_a)U\rho \otimes \rho_p U^*(1 \otimes P_a))}{\operatorname{tr}((I \otimes P_a)U\rho \otimes \rho_p U^*(1 \otimes P_a))}$

Remark

Any quantum instrument on $\mathcal{B}(\mathcal{H})$ can be realized with an appropriate ancila.

• After a first measurement with outcome ω_1 , the system is in the state

$$\rho_{\omega_1} = \frac{\Phi_{\omega_1}^*(\rho)}{\operatorname{tr}(\Phi_{\omega_1}^*(\rho))}$$

• After a first measurement with outcome ω_1 , the system is in the state

$$\rho_{\omega_1} = \frac{\Phi_{\omega_1}^*(\rho)}{\operatorname{tr}(\Phi_{\omega_1}^*(\rho))}$$

 The probability for the outcome of a second measurement to be ω₂, conditioned on the outcome of the 1st measurement is

$$\operatorname{tr}(\Phi_{\omega_{2}}^{*}(\rho_{\omega_{1}})) = \frac{\operatorname{tr}(\Phi_{\omega_{2}}^{*} \circ \Phi_{\omega_{1}}^{*}(\rho))}{\operatorname{tr}(\Phi_{\omega_{1}}^{*}(\rho))}$$

leaving the system in the state

$$\rho_{\omega_1\omega_2} = \frac{\Phi_{\omega_2}^* \circ \Phi_{\omega_1}^*(\rho)}{\operatorname{tr}(\Phi_{\omega_2}^* \circ \Phi_{\omega_1}^*(\rho))}$$

• After a first measurement with outcome ω_1 , the system is in the state

$$\rho_{\omega_1} = \frac{\Phi_{\omega_1}^*(\rho)}{\operatorname{tr}(\Phi_{\omega_1}^*(\rho))}$$

 The probability for the outcome of a second measurement to be ω₂, conditioned on the outcome of the 1st measurement is

$$\operatorname{tr}(\Phi_{\omega_{2}}^{*}(\rho_{\omega_{1}})) = \frac{\operatorname{tr}(\Phi_{\omega_{2}}^{*} \circ \Phi_{\omega_{1}}^{*}(\rho))}{\operatorname{tr}(\Phi_{\omega_{1}}^{*}(\rho))}$$

leaving the system in the state

$$\rho_{\omega_1\omega_2} = \frac{\Phi_{\omega_2}^* \circ \Phi_{\omega_1}^*(\rho)}{\operatorname{tr}(\Phi_{\omega_2}^* \circ \Phi_{\omega_1}^*(\rho))}$$

• The joint probability for the outcome of the first two measurements is therefore

$$\frac{\operatorname{tr}(\Phi_{\omega_2}^* \circ \Phi_{\omega_1}^*(\rho))}{\operatorname{tr}(\Phi_{\omega_1}^*(\rho))} \operatorname{tr}(\Phi_{\omega_1}^*(\rho)) = \operatorname{tr}(\Phi_{\omega_2}^* \circ \Phi_{\omega_1}^*(\rho))$$

• After a first measurement with outcome ω_1 , the system is in the state

$$\rho_{\omega_1} = \frac{\Phi_{\omega_1}^*(\rho)}{\operatorname{tr}(\Phi_{\omega_1}^*(\rho))}$$

 The probability for the outcome of a second measurement to be ω₂, conditioned on the outcome of the 1st measurement is

$$\operatorname{tr}(\Phi_{\omega_2}^*(\rho_{\omega_1})) = \frac{\operatorname{tr}(\Phi_{\omega_2}^* \circ \Phi_{\omega_1}^*(\rho))}{\operatorname{tr}(\Phi_{\omega_1}^*(\rho))}$$

leaving the system in the state

$$\rho_{\omega_1\omega_2} = \frac{\Phi_{\omega_2}^* \circ \Phi_{\omega_1}^*(\rho)}{\operatorname{tr}(\Phi_{\omega_2}^* \circ \Phi_{\omega_1}^*(\rho))}$$

• The joint probability for the outcome of the first two measurements is therefore

$$\frac{\operatorname{tr}(\Phi_{\omega_2}^* \circ \Phi_{\omega_1}^*(\rho))}{\operatorname{tr}(\Phi_{\omega_1}^*(\rho))} \operatorname{tr}(\Phi_{\omega_1}^*(\rho)) = \operatorname{tr}(\Phi_{\omega_2}^* \circ \Phi_{\omega_1}^*(\rho))$$

• The probability of a finite "quantum trajectory" $\omega = (\omega_1, \dots, \omega_T) \in \mathcal{A}^T$ is

$$\mathbb{P}_{\mathcal{T}}(\omega) = \operatorname{tr}(\Phi_{\omega_{\mathcal{T}}}^* \circ \cdots \circ \Phi_{\omega_2}^* \circ \Phi_{\omega_1}^*(\rho))$$

(Lüders-Schwinger-Wigner formula)

$$\mathbb{P}_{\mathcal{T}}(\omega_{1}\cdots\omega_{\mathcal{T}})=\langle I,\Phi_{\omega_{\mathcal{T}}}^{*}\cdots\Phi_{\omega_{1}}^{*}\rho\rangle=\langle\Phi_{\omega_{1}}\cdots\Phi_{\omega_{\mathcal{T}}}I,\rho\rangle$$

Recall $\Phi(I) = I$

$$\sum_{\nu\in\mathcal{A}}\mathbb{P}_{\mathcal{T}+1}(\omega_{1}\cdots\omega_{\mathcal{T}}\nu)=\sum_{\nu\in\mathcal{A}}\langle\Phi_{\nu}\mathit{I},\Phi_{\omega_{\mathcal{T}}}^{*}\cdots\Phi_{\omega_{1}}^{*}\rho\rangle=\mathbb{P}_{\mathcal{T}}(\omega_{1}\cdots\omega_{\mathcal{T}})$$

$$\mathbb{P}_{\mathcal{T}}(\omega_{1}\cdots\omega_{\mathcal{T}})=\langle I,\Phi_{\omega_{\mathcal{T}}}^{*}\cdots\Phi_{\omega_{1}}^{*}\rho\rangle=\langle\Phi_{\omega_{1}}\cdots\Phi_{\omega_{\mathcal{T}}}I,\rho\rangle$$

Recall $\Phi(I) = I$

It implies

$$\sum_{\nu \in \mathcal{A}} \mathbb{P}_{\mathcal{T}+1}(\omega_1 \cdots \omega_{\mathcal{T}} \nu) = \sum_{\nu \in \mathcal{A}} \langle \Phi_{\nu} I, \Phi_{\omega_{\mathcal{T}}}^* \cdots \Phi_{\omega_1}^* \rho \rangle = \mathbb{P}_{\mathcal{T}}(\omega_1 \cdots \omega_{\mathcal{T}})$$

• By Kolmogorov $\{\mathbb{P}_T\}_{T\in\mathbb{N}}$ extends to a probability \mathbb{P} on $\Omega = \mathcal{A}^{\mathbb{N}}$

$$\mathbb{P}_{\mathcal{T}}(\omega_{1}\cdots\omega_{\mathcal{T}})=\langle I,\Phi_{\omega_{\mathcal{T}}}^{*}\cdots\Phi_{\omega_{1}}^{*}\rho\rangle=\langle\Phi_{\omega_{1}}\cdots\Phi_{\omega_{\mathcal{T}}}I,\rho\rangle$$

Recall $\Phi(I) = I$

$$\sum_{\nu \in \mathcal{A}} \mathbb{P}_{T+1}(\omega_1 \cdots \omega_T \nu) = \sum_{\nu \in \mathcal{A}} \langle \Phi_{\nu} I, \Phi_{\omega_T}^* \cdots \Phi_{\omega_1}^* \rho \rangle = \mathbb{P}_T(\omega_1 \cdots \omega_T)$$

- By Kolmogorov $\{\mathbb{P}_{\mathcal{T}}\}_{\mathcal{T}\in\mathbb{N}}$ extends to a probability \mathbb{P} on $\Omega = \mathcal{A}^{\mathbb{N}}$
- By Perron-Frobenius there exists a state ρ_{st} such that $\Phi^*(\rho_{st}) = \rho_{st}$

$$\mathbb{P}_{\mathcal{T}}(\omega_{1}\cdots\omega_{\mathcal{T}})=\langle I,\Phi_{\omega_{\mathcal{T}}}^{*}\cdots\Phi_{\omega_{1}}^{*}\rho\rangle=\langle\Phi_{\omega_{1}}\cdots\Phi_{\omega_{\mathcal{T}}}I,\rho\rangle$$

Recall $\Phi(I) = I$

$$\sum_{\nu \in \mathcal{A}} \mathbb{P}_{\mathcal{T}+1}(\omega_1 \cdots \omega_{\mathcal{T}} \nu) = \sum_{\nu \in \mathcal{A}} \langle \Phi_{\nu} I, \Phi_{\omega_{\mathcal{T}}}^* \cdots \Phi_{\omega_1}^* \rho \rangle = \mathbb{P}_{\mathcal{T}}(\omega_1 \cdots \omega_{\mathcal{T}})$$

- By Kolmogorov $\{\mathbb{P}_{\mathcal{T}}\}_{\mathcal{T}\in\mathbb{N}}$ extends to a probability \mathbb{P} on $\Omega = \mathcal{A}^{\mathbb{N}}$
- By Perron-Frobenius there exists a state ρ_{st} such that $\Phi^*(\rho_{st}) = \rho_{st}$
- Chosing ρ_{st} as initial state

$$\sum_{\nu \in \mathcal{A}} \mathbb{P}_{T+1}(\nu \omega_1 \cdots \omega_T) = \sum_{\nu \in \mathcal{A}} \langle \Phi_{\omega_1} \cdots \Phi_{\omega_T} I, \Phi_{\nu}^* \rho_{\text{st}} \rangle = \mathbb{P}_T(\omega_1 \cdots \omega_T)$$

$$\mathbb{P}_{\mathcal{T}}(\omega_{1}\cdots\omega_{\mathcal{T}})=\langle I,\Phi_{\omega_{\mathcal{T}}}^{*}\cdots\Phi_{\omega_{1}}^{*}\rho\rangle=\langle\Phi_{\omega_{1}}\cdots\Phi_{\omega_{\mathcal{T}}}I,\rho\rangle$$

Recall $\Phi(I) = I$

$$\sum_{\nu \in \mathcal{A}} \mathbb{P}_{T+1}(\omega_1 \cdots \omega_T \nu) = \sum_{\nu \in \mathcal{A}} \langle \Phi_{\nu} I, \Phi_{\omega_T}^* \cdots \Phi_{\omega_1}^* \rho \rangle = \mathbb{P}_T(\omega_1 \cdots \omega_T)$$

- By Kolmogorov $\{\mathbb{P}_T\}_{T\in\mathbb{N}}$ extends to a probability \mathbb{P} on $\Omega = \mathcal{A}^{\mathbb{N}}$
- By Perron-Frobenius there exists a state ρ_{st} such that $\Phi^*(\rho_{st}) = \rho_{st}$
- Chosing $\rho_{\rm st}$ as initial state

$$\sum_{\nu \in \mathcal{A}} \mathbb{P}_{T+1}(\nu \omega_1 \cdots \omega_T) = \sum_{\nu \in \mathcal{A}} \langle \Phi_{\omega_1} \cdots \Phi_{\omega_T} I, \Phi_{\nu}^* \rho_{\mathrm{st}} \rangle = \mathbb{P}_T(\omega_1 \cdots \omega_T)$$

- \mathbb{P} is invariant under the left shift $\tau : \omega_1 \omega_2 \cdots \mapsto \omega_2 \omega_3 \cdots$ on Ω
- Dynamical system (Ω, τ, P)

The Rules of the Game

We consider the repeated measurement process described by the quantum instrument $\{\Phi_a\}_{a \in \mathcal{A}}$ with initial state ρ under the following assumptions:

The Rules of the Game

We consider the repeated measurement process described by the quantum instrument $\{\Phi_a\}_{a \in \mathcal{A}}$ with initial state ρ under the following assumptions:

Assumption A

 ρ is faithful and invariant: $\rho > 0$, $\Phi^*(\rho) = \rho$

Assumption B

 Φ is irreducible, i.e., there is no proper projection *P* such that $\Phi(P) \ge \lambda P$ for some $\lambda > 0$.

The Rules of the Game

We consider the repeated measurement process described by the quantum instrument $\{\Phi_a\}_{a \in \mathcal{A}}$ with initial state ρ under the following assumptions:

Assumption A

 ρ is faithful and invariant: $\rho > 0$, $\Phi^*(\rho) = \rho$

Assumption B

 Φ is irreducible, i.e., there is no proper projection *P* such that $\Phi(P) \ge \lambda P$ for some $\lambda > 0$.

Proposition

Under these assumptions the induced dynamical system $(\Omega, \tau, \mathbb{P})$ is ergodic

Entropies

• Basic quantities: the "entropy functions"

$$\Omega \ni \omega \mapsto S_T(\omega) = -\log \mathbb{P}_T(\omega_1 \cdots \omega_T)$$

and the Gibbs-Shannon entropies

$$\operatorname{Ent}(\mathbb{P}_{\mathcal{T}}) = \mathbb{E}[\mathcal{S}_{\mathcal{T}}] = -\sum_{\omega \in \mathcal{A}^{\mathcal{T}}} \mathbb{P}_{\mathcal{T}}(\omega) \log \mathbb{P}_{\mathcal{T}}(\omega)$$

Entropies

• Basic quantities: the "entropy functions"

$$\Omega \ni \omega \mapsto S_T(\omega) = -\log \mathbb{P}_T(\omega_1 \cdots \omega_T)$$

and the Gibbs-Shannon entropies

$$\operatorname{Ent}(\mathbb{P}_{\mathcal{T}}) = \mathbb{E}[\mathcal{S}_{\mathcal{T}}] = -\sum_{\omega \in \mathcal{A}^{\mathcal{T}}} \mathbb{P}_{\mathcal{T}}(\omega) \log \mathbb{P}_{\mathcal{T}}(\omega)$$

Results from ergodic theory

• Kolmogorov-Sinai: metric entropy of \mathbb{P} w.r.t. the shift τ is

$$h_{\tau}(\mathbb{P}) = \lim_{T \to \infty} \frac{1}{T} \operatorname{Ent}(\mathbb{P}_{T}) \in [0, \log |\mathcal{A}|]$$

• Shannon-McMillan-Breiman:

$$\lim_{T\to\infty}\frac{1}{T}S_T(\omega)=h_\tau(\mathbb{P})$$

for \mathbb{P} -a.e. $\omega \in \Omega$ and in $L^1(\Omega, \mathbb{P})$

Beyond the Shannon-McMillan-Breiman theorem

• Large Deviations. Quantify fluctuations around the SMB-limit

$$\frac{1}{T}S_T(\omega) \longrightarrow h_\tau(\mathbb{P})$$

by a LDP

$$\mathbb{P}_T\left[\frac{1}{T}S_T\sim s
ight]\sim \mathrm{e}^{-T\,I(s)}$$

Beyond the Shannon-McMillan-Breiman theorem

• Large Deviations. Quantify fluctuations around the SMB-limit

$$\frac{1}{T}S_T(\omega) \longrightarrow h_\tau(\mathbb{P})$$

by a LDP

$$\mathbb{P}_{T}\left[\frac{1}{T}S_{T}\sim s\right]\sim e^{-T\,l(s)}$$

Multifractal Analysis. Fractal dimension of the level sets

$$\mathcal{L}_{s} = \left\{ \omega \in \Omega \mid \lim_{T o \infty} rac{1}{T} \mathcal{S}_{T}(\omega) = s
ight\}$$

Beyond the Shannon-McMillan-Breiman theorem

• Large Deviations. Quantify fluctuations around the SMB-limit

$$\frac{1}{T}S_T(\omega) \longrightarrow h_\tau(\mathbb{P})$$

by a LDP

$$\mathbb{P}_{T}\left[\frac{1}{T}S_{T}\sim s\right]\sim \mathrm{e}^{-T\,I(s)}$$

Multifractal Analysis. Fractal dimension of the level sets

$$L_{s} = \left\{ \omega \in \Omega \mid \lim_{T \to \infty} \frac{1}{T} S_{T}(\omega) = s \right\}$$

• Statistical Mechanics. Think of $\omega_1 \cdots \omega_T$ as a configuration of a spin chain. Look at $T \to \infty$ as a thermodynamic limit and develop the statistical mechanics of the infinite volume spin system: phase transitions, long range order ...

Pressure == Rényi Entropy

$$\mathcal{P}_{\mathcal{T}}(eta) = \log \sum_{\omega \in \mathcal{A}^{\mathcal{T}}} \mathbb{P}_{\mathcal{T}}(\omega)^{eta} = \log \sum_{\omega \in \mathcal{A}^{\mathcal{T}}} \mathrm{e}^{-eta \mathcal{S}_{\mathcal{T}}(\omega)}$$

Pressure == Rényi Entropy

$${\mathcal{P}}_{\mathcal{T}}(eta) = \log \sum_{\omega \in \mathcal{A}^{\mathcal{T}}} \mathbb{P}_{\mathcal{T}}(\omega)^{eta} = \log \sum_{\omega \in \mathcal{A}^{\mathcal{T}}} \mathrm{e}^{-eta \mathcal{S}_{\mathcal{T}}(\omega)}$$

Fheorem 1 [Thermodynamic formalism for $eta > {\sf 0}$

• For any $\mathbb{Q} \in \mathcal{P}_{\tau}(\Omega)$ the following limit exists

$$\varsigma(\mathbb{Q}) = \lim_{t \to \infty} \frac{1}{T} \int S_T(\omega) \mathrm{d}\mathbb{Q}(\omega)$$

2 For $\beta > 0$ one has

$$p(\beta) = \lim_{T \to \infty} \frac{1}{T} P_T(\beta) = \sup_{\mathbb{Q} \in \mathcal{P}_T(\Omega)} \left(h_\tau(\mathbb{Q}) - \beta_{\varsigma}(\mathbb{Q}) \right)$$

which defines a differentiable function.

() For $\beta > 0$ there is a unique *equilibrium measure* $\mathbb{P}_{\beta} \in \mathcal{P}_{\tau}(\Omega)$ such that

$$p(\beta) = h_{\tau}(\mathbb{P}_{\beta}) - \beta\varsigma(\mathbb{P}_{\beta})$$

Subadditive Thermodynamic Formalism

• Upper decoupling: Assumption (A) \Longrightarrow

$$\mathbb{P}_{\mathcal{T}+\mathcal{T}'}(\omega\omega') \leq \rho_0^{-1} \mathbb{P}_{\mathcal{T}}(\omega) \mathbb{P}_{\mathcal{T}'}(\omega')$$

with $\rho_0 = \min \operatorname{sp}(\rho) \Longrightarrow$ super-additivity

$$S_{T+T'} \geq S_T + S_{T'} \circ \tau^T + \log \rho_0$$

which suffices to prove existence of limits (Fekete's Lemma).

 Lower decoupling: Assumption (B) ⇒ There is C > 0 and t_l > 0 such that for any finite words ω, ω' one can find a word ν of length L ≤ t_l such that

$$\mathbb{P}_{T+L+T'}(\omega\nu\omega') \geq C\mathbb{P}_{T}(\omega)\mathbb{P}_{T'}(\omega')$$

This yields differentiability of the limit and uniqueness of equilibrium measure

Subadditive Thermodynamic Formalism

• Upper decoupling: Assumption (A) \Longrightarrow

$$\mathbb{P}_{\mathcal{T}+\mathcal{T}'}(\omega\omega') \leq \rho_0^{-1} \mathbb{P}_{\mathcal{T}}(\omega) \mathbb{P}_{\mathcal{T}'}(\omega')$$

with $\rho_0 = \min \operatorname{sp}(\rho) \Longrightarrow$ super-additivity

$$S_{T+T'} \geq S_T + S_{T'} \circ \tau^T + \log \rho_0$$

which suffices to prove existence of limits (Fekete's Lemma).

 Lower decoupling: Assumption (B) ⇒ There is C > 0 and t_l > 0 such that for any finite words ω, ω' one can find a word ν of length L ≤ t_l such that

$$\mathbb{P}_{T+L+T'}(\omega\nu\omega') \geq C\mathbb{P}_{T}(\omega)\mathbb{P}_{T'}(\omega')$$

This yields differentiability of the limit and uniqueness of equilibrium measure

Theorem 1 \implies local LDP and Multifractal Formalism for $s \in [p'(0+), p'(+\infty)]$.

• Pressure $\mathbb{R} \ni \beta \mapsto p(\beta) \longleftrightarrow$ Large Deviations (Gärtner-Ellis)

• Pressure $\mathbb{R} \ni \beta \mapsto p(\beta) \longleftrightarrow$ Large Deviations (Gärtner-Ellis)

• Suppose there is a basis of \mathcal{H} and a Kraus representation of the Φ_a such that all Kraus matrices have algebraic entries. Then $p(\beta) < \infty$ for all $\beta \in \mathbb{R}$

• Pressure $\mathbb{R} \ni \beta \mapsto p(\beta) \longleftrightarrow$ Large Deviations (Gärtner-Ellis)

 Suppose there is a basis of *H* and a Kraus representation of the Φ_a such that all Kraus matrices have algebraic entries. Then p(β) < ∞ for all β ∈ ℝ

•
$$\mathcal{H} = \mathbb{C}^2, \, \mathcal{A} = \{-, 0, +\}, \, \rho = I/2$$

• Let R_{θ} be the rotation by θ , and P_{\pm} the projections on the standard basis of \mathbb{C}^2

$$\Phi_0(X) = rac{1}{2} R_ heta X R_ heta^*, \qquad \Phi_\pm(X) = rac{1}{2} P_\pm X P_\pm$$

- For a.e. $\theta \in [0, 2\pi]$, $p(\beta)$ is finite for all $\beta \in \mathbb{R}$
- For a dense set of θ , $p(\beta) = +\infty$ for all $\beta < 0$

• Pressure $\mathbb{R} \ni \beta \mapsto p(\beta) \longleftrightarrow$ Large Deviations (Gärtner-Ellis)

 Suppose there is a basis of *H* and a Kraus representation of the Φ_a such that all Kraus matrices have algebraic entries. Then p(β) < ∞ for all β ∈ ℝ

•
$$\mathcal{H} = \mathbb{C}^2$$
, $\mathcal{A} = \{-, 0, +\}$, $\rho = I/2$

• Let R_{θ} be the rotation by θ , and P_{\pm} the projections on the standard basis of \mathbb{C}^2

$$\Phi_0(X) = rac{1}{2} R_ heta X R_ heta^*, \qquad \Phi_\pm(X) = rac{1}{2} P_\pm X P_\pm$$

- For a.e. $\theta \in [0, 2\pi]$, $p(\beta)$ is finite for all $\beta \in \mathbb{R}$
- For a dense set of θ , $p(\beta) = +\infty$ for all $\beta < 0$

In general, there is no thermodynamic formalism for $\beta < 0$

Main Results

Theorem I

() LDP for the entropy function. For any Borel set Σ

$$-\inf_{s\in \dot{\Sigma}} I(s) \leq \liminf_{T\to\infty} \frac{1}{T} \log \mathbb{P}\left[\frac{S_T}{T} \in \Sigma\right] \leq \limsup_{T\to\infty} \frac{1}{T} \log \mathbb{P}\left[\frac{S_T}{T} \in \Sigma\right] \leq -\inf_{s\in \bar{\Sigma}} I(s)$$

holds with rate function $I(s) = \sup_{\beta \in \mathbb{R}} (\beta s - p(-\beta))$

@ Multifractal analysis of the entropy function.

$$L_s \neq \emptyset \implies \dim_H L_s = \frac{l(s) + s}{\log |\mathcal{A}|}$$

Level II LDP. The empirical measures

$$\mu_T^{\omega} = \frac{1}{T} \sum_{t=0}^{T-1} \delta_{\tau^t(\omega)}$$

also satisfy the LDP with rate function

$$\mathbb{I}(\mathbb{Q}) = \begin{cases} \sup_{\nu \in C(\Omega)} \left(\int \nu d\mathbb{Q} - P(\nu) \right) & \text{if } \mathbb{Q} \in \mathcal{P}_{\tau}(\Omega) \\ +\infty & \text{otherwise} \end{cases}$$

where
$$P(v) = \lim_{T \to \infty} \frac{1}{T} \log \int e^{\sum_{t=0}^{T-1} v \circ \tau^t} d\mathbb{P}$$

$$\theta \in]0, 2[$$
• $\mathcal{H} = \mathbb{C}^2, \mathcal{A} = \{0, 1\}$
• $\Phi_0(X) = \frac{1}{2+\theta} \begin{pmatrix} X_{11} + \theta X_{22} & 0\\ 0 & \theta X_{22} \end{pmatrix} \quad \Phi_1(X) = \frac{1}{2+\theta} \begin{pmatrix} X_{11} & 0\\ 0 & (2-\theta)X_{11} + \theta X_{22} \end{pmatrix}$
• $\rho = \begin{pmatrix} 1 - \frac{\theta}{2} & 0\\ 0 & \frac{\theta}{2} \end{pmatrix}$

$$\theta \in]0, 2[$$
• $\mathcal{H} = \mathbb{C}^2, \mathcal{A} = \{0, 1\}$
• $\Phi_0(X) = \frac{1}{2+\theta} \begin{pmatrix} X_{11} + \theta X_{22} & 0\\ 0 & \theta X_{22} \end{pmatrix} \quad \Phi_1(X) = \frac{1}{2+\theta} \begin{pmatrix} X_{11} & 0\\ 0 & (2-\theta)X_{11} + \theta X_{22} \end{pmatrix}$
• $\rho = \begin{pmatrix} 1 - \frac{\theta}{2} & 0\\ 0 & \frac{\theta}{2} \end{pmatrix}$

• \mathbb{P} is a matrix product state

$$\mathbb{P}_{T}(\omega_{1}\cdots\omega_{T})=(2+\theta)^{-T}(1-\theta/2,\theta/2)M_{\omega_{1}}\cdots M_{\omega_{T}}\begin{pmatrix}1\\1\end{pmatrix}$$

where

$$M_0 = \begin{pmatrix} 1 & \theta \\ 0 & \theta \end{pmatrix} \qquad M_1 = \begin{pmatrix} 1 & 0 \\ 2 - \theta & \theta \end{pmatrix}$$

$\theta \neq \mathbf{1}$

- $\mathbb{R} \ni \beta \mapsto p(\beta)$ is real analytic
- $\bullet \ \mathbb{P} \sim$ equilibrium state of a spin system with exponentially decaying interactions
- No phase transition!

$\theta \neq \mathbf{1}$

- $\mathbb{R} \ni \beta \mapsto p(\beta)$ is real analytic
- $\bullet \ \mathbb{P} \sim$ equilibrium state of a spin system with exponentially decaying interactions
- No phase transition!

$\theta = 1$

-] $-2, \infty$ [$\ni \beta \mapsto p(\beta)$ is real analytic and strictly convex
- $]-\infty,2] \ni \beta \mapsto p(\beta)$ is affine
- $\bullet \ \mathbb{P}$ weak Gibbs for a continuous potential
- 2nd order phase transition at $\beta = -2$

$\theta \neq \mathbf{1}$

- $\mathbb{R} \ni \beta \mapsto p(\beta)$ is real analytic
- $\bullet \ \mathbb{P} \sim$ equilibrium state of a spin system with exponentially decaying interactions
- No phase transition!

$\theta = 1$

-] $-2, \infty$ [$\ni \beta \mapsto p(\beta)$ is real analytic and strictly convex
- $]-\infty,2] \ni \beta \mapsto p(\beta)$ is affine
- $\bullet \ \mathbb{P}$ weak Gibbs for a continuous potential
- 2nd order phase transition at $\beta = -2$

Similar number theoretic spin chains have been extensively studied in 1990–2010 [Knauf,Kleban-Ozluk,...]

Example 2: The Erdös Instrument

- $\mathcal{H} = \mathbb{C}^2, \, \mathcal{A} = \{0, 1, 2\}$
- \mathbb{P} is again a *matrix product state*

$$\mathbb{P}_{T}(\omega_{1}\cdots\omega_{T})=5^{-T}(1/2,1/2)M_{\omega_{1}}\cdots M_{\omega_{T}}\begin{pmatrix}1\\1\end{pmatrix}$$

where

$$M_0 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad M_1 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \qquad M_2 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

- P is weak Gibbs with continuous potential
- The pressure ℝ ∋ β → p(β) is real analytic and strictly convex, except for a 1st order phase transition at β_{crit} ∈ [-3, -2]

Example 3: The Keep-Switch Instrument

• A perfect Kraus instrument: $\mathcal{H} = \mathbb{C}^2$, $\mathcal{A} = \{-,+\}$, $\Phi_{\pm}(X) = V_{\pm}XV_{\pm}^*$

$$V_{-} = \left(\begin{array}{cc} \sqrt{\cos\theta} & -\sin\theta/2 \\ -\sin\theta/2 & 0 \end{array} \right), \quad V_{+} = \left(\begin{array}{cc} -\sin\theta/2 & 0 \\ -\sqrt{\cos\theta} & -\sin\theta/2 \end{array} \right)$$

• Satisfies Assumptions (A) and (B) for $\theta \in]0, \pi/2[$

Example 3: The Keep-Switch Instrument

• A perfect Kraus instrument: $\mathcal{H} = \mathbb{C}^2$, $\mathcal{A} = \{-, +\}$, $\Phi_{\pm}(X) = V_{\pm}XV_{\pm}^*$

$$V_{-} = \left(\begin{array}{cc} \sqrt{\cos\theta} & -\sin\theta/2 \\ -\sin\theta/2 & 0 \end{array} \right), \quad V_{+} = \left(\begin{array}{cc} -\sin\theta/2 & 0 \\ -\sqrt{\cos\theta} & -\sin\theta/2 \end{array} \right)$$

- Satisfies Assumptions (A) and (B) for $\theta \in]0, \pi/2[$
- Pressure and its derivative for $\theta = \pi/3$

Example 3: The Keep-Switch Instrument

• A perfect Kraus instrument: $\mathcal{H} = \mathbb{C}^2$, $\mathcal{A} = \{-,+\}$, $\Phi_{\pm}(X) = V_{\pm}XV_{\pm}^*$

$$V_{-} = \left(\begin{array}{cc} \sqrt{\cos\theta} & -\sin\theta/2 \\ -\sin\theta/2 & 0 \end{array} \right), \quad V_{+} = \left(\begin{array}{cc} -\sin\theta/2 & 0 \\ -\sqrt{\cos\theta} & -\sin\theta/2 \end{array} \right)$$

- Satisfies Assumptions (A) and (B) for $\theta \in]0, \pi/2[$
- Pressure and its derivative for $\theta = \pi/3$

• Non Gaussian central limit theorem as $T \to \infty$

Perspectives

- Theory of 2 instruments: comparison/hypothesis testing (relative entropies), fluctuation theorems...
- Further develop the thermodynamic formalism for non-Gibbsian systems using results from the subadditive ergodic theory.
- Investigate the physical meaning of phase transition beyond the failure of CLT. Occurrence of anomalous scaling ?
- Special measurements, e.g., thermal probes.
- Continuous measurements/monitoring.
- Many instruments, parameter estimation (under development)
- o ...

- Benoist, Jakšić, Pautrat, P.: On entropy production of repeated quantum measurements I: General Theory. Commun. Math. Phys. 2017
- Cuneo, Jakšić, P., Shirikyan: Large deviations and fluctuation theorem for selectively decoupled measures on shift spaces. Rev. Math. Phys. 2019
- Benoist, Cuneo, Jakšić, P.: On entropy production of repeated quantum measurements II and III: Examples (soon on arXiv)

o ...

Thank you !