Linear Response for Non-Equilibrium Steady States of Open Quantum Systems

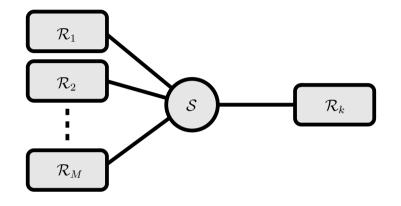
JOINT WORK WITH

V. Jakšić (McGill Univ.) & Y. Ogata (Tokyo Univ.)

Summary

- 1. Thermally driven open quantum systems
- 2. NESS: formal calculation of steady currents
- 3. NESS: mathematical constructions
- 4. Linear response to thermal drive generalities
- 5. Linear response to thermal drive formal calculation
- 6. Linear response to thermal drive an axiomatic approach
- 7. Examples

1. Thermally driven open quantum systems



 $\begin{array}{l} \text{Small system } \mathcal{S} \mbox{---} \text{spatially confined, discrete spectrum} \\ & \text{coupled to} \\ \text{ideal thermal reservoirs } \mathcal{R}_1, \dots, \mathcal{R}_M \mbox{---} \text{spatially extended ideal quantum gases} \\ & \text{trough} \\ & \text{junctions } -- \text{ interactions between } \mathcal{S} \text{ and } \mathcal{R}_k. \end{array}$

Conserved extensive quantities A_k of \mathcal{R}_k (e.g. energy $H_{\mathcal{R}_k}$, mass $M_{\mathcal{R}_k}$, charge $Q_{\mathcal{R}_k}$, ...) can cross the junction and flow through the system \mathcal{S} . The corresponding outgoing fluxes are

$$\Phi_{\boldsymbol{A_k}} = -\left. \frac{d \, \boldsymbol{A_k}}{d t} \right|_{t=0} = -i[H, \boldsymbol{A_k}].$$

At joint thermal equilibrium

$$\langle \Phi_{\boldsymbol{A}_{\boldsymbol{k}}} \rangle_{\mathrm{eq}} = 0.$$

Under the joint dynamics initial state $\langle \cdot \rangle_0$ with inhomogeneous intensive thermodynamic parameters evolves towards steady state $\langle \cdot \rangle_+$ which may support non-trivial currents

$$\langle \Phi_{\boldsymbol{A}_{\boldsymbol{k}}} \rangle_{+} \neq 0.$$

Calculating these currents is the main problem of Non-Equilibrium Statistical Mechanics of Open Quantum Systems.

2. NESS: Formal calculations of steady currents

A. Master equation techniques (Einstein 1917, Pauli 1928, van Hove 1962, ...). Weak junctions \longrightarrow Effective Markovian dynamics for the occupation numbers n_{ω} of the discrete energy levels ω of S.

B. Landauer-Büttiker formula (Landauer 1957, Büttiker 1986).

Neglect interactions in the joint system \longrightarrow One body problem. Steady charge currents given by the scattering matrix elements $S_{kl}(\omega)$ between \mathcal{R}_l and \mathcal{R}_k

$$\langle \Phi_{Q_{\mathcal{R}_k}} \rangle_+ = \int \operatorname{tr}_{\mathcal{R}_k} (S(\omega) f(\omega) S(\omega)^* - f(\omega)) \frac{d\omega}{2\pi}.$$

C. Schwinger-Keldysh formalism (Schwinger 1961, Keldysh 1965). Special form of perturbation theory. Book-keeping device to generate diagrammatic expansion of the steady state

$$\langle \cdot \rangle_{+} = \lim_{t \to \infty} \frac{\operatorname{tr}(e^{-(\sum_{k} \beta_{k} H_{\mathcal{R}_{k}} + \beta_{\mathcal{S}} H_{\mathcal{S}})} e^{it H_{\operatorname{tot}}}(\cdot) e^{-it H_{\operatorname{tot}}})}{\operatorname{tr}(e^{-(\sum_{k} \beta_{\mathcal{R}_{k}} H_{\mathcal{R}_{k}} + \beta_{\mathcal{S}} H_{\mathcal{S}})})}.$$

3. NESS: Mathematical constructions

<u>Framework:</u> Perturbation theory of C^* -dynamical systems.

Decoupled system $(\mathcal{O}, \tau_0^t, \langle \cdot \rangle_0)$: \mathcal{O} is a C^* -algebra, $\tau_0^t = e^{t \delta_0}$ a strongly continuous group of *-automorphisms of $\mathcal{O}, \langle \cdot \rangle_0$ a τ_0^t -invariant state. Sub-algebras structure: $\mathcal{O}_{\alpha} \subset \mathcal{O}, \ \alpha = \mathcal{S}, \mathcal{R}_1, \dots, \mathcal{R}_M,$

$$\mathcal{O}_{\alpha} \cap \mathcal{O}_{\alpha'} = \{I\} \text{ for } \alpha \neq \alpha',$$
$$\mathcal{O} = \mathcal{O}_{\mathcal{S}} \lor \mathcal{O}_{\mathcal{R}} = \mathcal{O}_{\mathcal{S}} \lor (\mathcal{O}_{\mathcal{R}_{1}} \lor \cdots \lor \mathcal{O}_{\mathcal{R}_{M}}),$$
$$\tau_{0}^{t}(\mathcal{O}_{\alpha}) = \mathcal{O}_{\alpha}.$$

Coupling:

$$V = \sum_{k=1}^{M} V_k, \quad V_k = V_k^* \in \mathcal{O}_S \lor \mathcal{O}_{\mathcal{R}_k}.$$

Coupled system $(\mathcal{O}, \tau_{\lambda}^{t})$: Locally perturbed dynamics

$$\tau_{\lambda}^{t} = e^{t\delta_{\lambda}}, \quad \delta_{\lambda} = \delta_{0} + i\lambda[V, \cdot],$$

with junction strength $\lambda \in \mathbb{R}$.

A. The van Hove limit.

• Rigorous derivation of master equation for S from microscopic dynamics of the joint system on time scale λ^{-2} (Davies 1974): For $A_S \in \mathcal{O}_S$,

$$\lim_{\lambda \to 0} \left\langle \tau_0^{-t/\lambda^2} \circ \tau_{\lambda}^{t/\lambda^2}(A_{\mathcal{S}}) \right\rangle_{\mathcal{R}\,0} = e^{t\mathcal{L}}(A_{\mathcal{S}}),$$

defines a quantum Markov semi-group. NESS is obtained by solving $\mathcal{L}^* \rho = 0$.

- Thermodynamics of weakly coupled open systems, including linear response theory (Lebowitz-Spohn 1978).
- The van Hove limit gives exact results for the currents to second order in the junction strength λ .
- Extension of the convergence to the joint system (Derezinski–De Roeck 2006) connection with quantum stochastic differential equations.

- B. Scattering approach (Ruelle 2000)
 - If the Møller morphism

$$\mathcal{O}_{\mathcal{R}} \ni A \mapsto \eta_{+}(A) = \lim_{t \to \infty} \tau_{\lambda}^{-t} \circ \tau_{0}^{t}(A),$$

exist and is an isomorphism between $\mathcal{O}_{\mathcal{R}}$ and \mathcal{O} (completeness of C^* -scattering) then

$$\langle A \rangle_{+} = \lim_{t \to \infty} \left\langle \tau_0^{-t} \circ \tau_\lambda^t(A) \right\rangle_0 = \left\langle \eta_+^{-1}(A) \right\rangle_{\mathcal{R}\,0}.$$

- Fairly well understood perturbation theory (Botvich-Malyshev 1983) allows to handle locally interacting Fermions! (Fröhlich–Merkli–Ueltschi 2004).
- In the special case of noninteracting fermions τ_0^t and τ_{λ}^t are groups of Bogoliubov automorphisms generated by one-particle Hamiltonians h_0 and h_{λ} . The formula

$$\langle a^*(f)a(g)\rangle_+ = \langle a^*(\Omega^*_-f)a(\Omega^*_-g)\rangle_{\mathcal{R}\,0},$$

together with Wick theorem completely describes the NESS. Landauer-Büttiker formula is an elementary consequence of it.

C. C-Liouvillean approach (Jakšić–P 2002)

 $(\mathcal{H}, \pi, \Omega)$ GNS representation of \mathcal{O} associated to $\langle \cdot \rangle_0$.

Assumption: $\langle \cdot \rangle_0$ is modular i.e.,

$$A\Omega = 0 \quad \Longrightarrow \quad A = 0,$$

for all $A \in \pi(\mathcal{O})''$ (true if each reservoir is in thermal equilibrium).

For sufficiently regular V one can construct the C-Liouvillean L s.t.

$$L_{\lambda}\Omega = 0, \quad e^{itL_{\lambda}}\pi(A)e^{-itL_{\lambda}} = \pi(\tau_{\lambda}^{t}(A)).$$

NESS is obtained as zero-resonance of L_{λ}^* : if

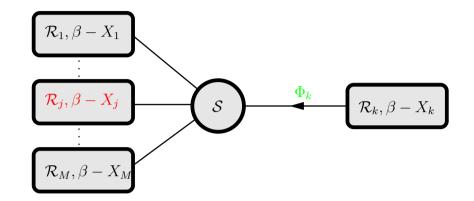
$$L_{\lambda}^{*}\Psi_{\lambda} = 0, \quad (\Psi_{\lambda}, \Omega) = 1,$$

then, for sufficiently regular $A \in \mathcal{O}$:

$$\langle A \rangle_{+} = (\Psi_{\lambda}, \pi(A)\Omega).$$

The C-Liouvillean approach is well suited for perturbative analysis. In a way it can be considered as a rigorous implementation of Schwinger-Keldysh formalism.

3. Linear response to thermal drive — generalities



Thermodynamic force $X_k \leftrightarrow$ Conjugated flux Φ_k \uparrow Entropy production rate $\sigma = \sum_k X_k \Phi_k$

Transport coefficients:

$$L_{kj} = \partial_{\boldsymbol{X}_j} \langle \Phi_k \rangle_+ \Big|_{\boldsymbol{X}=0}.$$

Mean entropy production rate:

$$\langle \sigma \rangle_{+} = \sum_{k} X_{k} \langle \Phi_{k} \rangle_{+} = \sum_{kj} L_{kj} X_{k} X_{j} + O(|X|^{2}) \ge 0.$$

Kubo formula (Kubo 1957, Kubo–Yokota–Nakajima 1957, Luttinger 1964):

$$L_{kj} = \frac{1}{\beta} \int_0^\infty ds \int_0^\beta du \left\langle \tau^s(\Phi_k) \tau^{iu}(\Phi_j) \right\rangle_{\rm eq}$$

Here and in the sequel $\tau = \tau_{\lambda}$ denotes the coupled dynamics.

For TRI systems one has the equivalent nicer looking formula

$$L_{kj} = \frac{1}{2} \int_{-\infty}^{\infty} ds \langle \tau^s(\Phi_k) \Phi_j \rangle_{\text{eq}},$$

and the Onsager reciprocity relations (Onsager 1931):

$$L_{kj} = L_{jk}.$$

More generally, for conserved extensive observables A_k of \mathcal{R}_k

$$\partial_{X_j} \langle \Phi_{A_k} \rangle_+ \Big|_{X=0} = \frac{1}{\beta} \int_0^\infty ds \int_0^\beta du \, \left\langle \tau^s(\Phi_{A_k}) \tau^{iu}(\Phi_j) \right\rangle_{\text{eq}},$$

and for TRI system if A_k is even under time reversal

$$\partial_{X_j} \langle \Phi_{A_k} \rangle_+ \Big|_{X=0} = \frac{1}{2} \int_{-\infty}^{\infty} ds \langle \tau^s(\Phi_{A_k}) \Phi_j \rangle_{\text{eq}}.$$

Proving Kubo formula?

2 conceptually distinct cases:

- Mechanical drive: Perturbing the dynamics by external fields
 - \rightarrow Time dependent perturbation theory.
- Thermal drive: Perturbing the initial state. Formal derivations based on disputable
 - \rightarrow Local thermal equilibrium.
 - \rightarrow Entropy production argument.

We propose a mechanical treatment of thermal drive:

After a finite time t the perturbation of initial state is equivalent to the action of some external field. (Zubarev, 1974; Tasaki–Matsui 2001).

4. Linear response — formal calculation

Open quantum system near equilibrium driven by temperature differentials (adaptation to other thermal forces is easy !).

- $H = H_{\mathcal{S}} + H_{\mathcal{R}} + \lambda V = H_{\mathcal{S}} + \sum_{k} H_{\mathcal{R}_{k}} + \lambda V = H^{(0)} + \lambda V.$
- Equilibrium state at inverse temperature β

$$\omega_{\rm eq} = \frac{1}{Z_{\rm eq}} e^{-\beta H}$$

• Initial product state

$$\omega_X^{(0)} = \frac{1}{Z_X^{(0)}} e^{-(\beta H_{\mathcal{S}} + \sum_k (\beta - X_k) H_{\mathcal{R}_k})} = \frac{1}{Z_X^{(0)}} e^{-\beta H_X^{(0)}},$$

with thermodynamic forces $X = (X_1, ..., X_M)$ is Gibbs state for

$$H_{X}^{(0)} = H^{(0)} - \sum_{k=1}^{M} \frac{X_{k}}{\beta} H_{\mathcal{R}_{k}}.$$

• Heat fluxes

$$\Phi_k = -\frac{dH_{\mathcal{R}_k}}{dt} = -i[H, H_{\mathcal{R}_k}] = i\lambda[H_{\mathcal{R}_k}, V].$$

Step 0. Since the junction V is local the Gibbs state

$$\omega_{\mathbf{X}} = \frac{1}{Z_{\mathbf{X}}} e^{-\beta H_{\mathbf{X}}}, \quad H_{\mathbf{X}} = H_{\mathbf{X}}^{(0)} + \lambda V = H - \sum_{k=1}^{M} \frac{X_{k}}{\beta} H_{\mathcal{R}_{k}},$$

is thermodynamically equivalent to $\omega_{\mathbf{X}}^{(0)}, \ \omega_{X=0} = \omega_{\text{eq}}.$

Step 1. ω_X is Gibbs state for $H_X \implies \omega_X \circ \tau^t$ is Gibbs state for

$$\tau^{-t}(H_{\mathbf{X}}) = H_{\mathbf{X}} - \sum_{k=1}^{M} \frac{X_{k}}{\beta} \int_{0}^{t} \tau^{-s}(\Phi_{k}) ds = H_{\mathbf{X}} + P_{\mathbf{X}}(t).$$
(1)

Step 2. By Duhamel formula

$$e^{-\beta(H_X+P_X(t))} = e^{-\beta H_X} - \int_0^\beta \sigma_X^{iu}(P_X(t)) e^{-\beta H_X} du + O(P_X(t)^2),$$

where σ_X^t is the dynamics generated by H_X . It follows that

$$\omega_{\boldsymbol{X}}(\tau^{t}(A)) = \omega_{\boldsymbol{X}}(A) + \sum_{k=1}^{M} \frac{\boldsymbol{X}_{k}}{\beta} \int_{0}^{t} ds \int_{0}^{\beta} du \, \omega_{\boldsymbol{X}}(A\sigma_{\boldsymbol{X}}^{iu}(\tau^{-s}(\Phi_{k}))) + O(|\boldsymbol{X}|^{2}).$$

Step 3. Observable A is centered if $\omega_X(A) = 0$ for all X near X = 0. Since $\omega_{X=0}$ is a Gibbs state for H we have $\omega_{X=0}(\tau^t(A)) = \omega_{X=0}(A) = 0$, hence

$$\omega_{\boldsymbol{X}}(\tau^{t}(A)) - \omega_{X=0}(\tau^{t}(A)) = \sum_{k=1}^{M} \frac{\boldsymbol{X}_{\boldsymbol{k}}}{\beta} \int_{0}^{t} ds \int_{0}^{\beta} du \, \omega_{\boldsymbol{X}}(A\sigma_{\boldsymbol{X}}^{iu}(\tau^{-s}(\Phi_{\boldsymbol{k}}))) + O(|\boldsymbol{X}|^{2}).$$

Step 4. Since $H_{X=0} = H$, $\omega_{X=0} = \omega_{eq}$ and $\sigma_{X=0} = \tau$ $\lim_{X \to 0} \omega_X(A\sigma_X^{iu}(\tau^{-s}(\Phi_k))) = \omega_{eq}(A\tau^{-s+iu}(\Phi_k)) = \omega_{eq}(\tau^s(A)\tau^{iu}(\Phi_k)),$

and we get

$$\partial_{X_k}\omega_X(\tau^t(A))\big|_{X=0} = \frac{1}{\beta} \int_0^t ds \int_0^\beta du \,\omega_{\text{eq}}(\tau^s(A)\tau^{iu}(\Phi_k)).$$

Step 5. Assume now that NESS

$$\lim_{t \to \infty} \omega_X(\tau^t(A)) = \omega_{X+}(A),$$

exists. Exchange of the $t \to \infty$ limit with ∂_{X_k} leads to Kubo formula

$$\partial_{X_k}\omega_{X+}(A)|_{X=0} = \frac{1}{\beta} \int_0^\infty ds \int_0^\beta du \,\omega_{\text{eq}}(\tau^s(A)\tau^{iu}(\Phi_k)).$$

Remark 1. 3 crucial points:

- Step 0: Choice of reference state ω_X .
- Step 3: Observable A must be centered !
- Step 5: Exchange of limits.

Remark 2. Taking $t \to \infty$ in (1) leads to Zubarev-MacLennan ensemble

$$\omega_{X+} = \frac{1}{Z} e^{-\beta H_X + \sum_k X_k \int_{-\infty}^0 \tau^s(\Phi_k) ds}$$

4. Linear response — an axiomatic approach

4.1. Entropy balance and its consequences

Decoupled dynamics (\mathcal{O}, τ_0^t)

$$\tau_{\mathcal{S}}^{t} = \tau_{0}^{t}|_{\mathcal{O}_{\mathcal{S}}}, \quad \tau_{\mathcal{R}_{k}}^{t} = \tau_{0}^{t}|_{\mathcal{O}_{\mathcal{R}_{k}}},$$
$$\tau_{0}^{t} = e^{t\delta_{0}}, \quad \tau_{\mathcal{S}}^{t} = e^{t\delta_{\mathcal{S}}}, \quad \tau_{\mathcal{R}_{k}}^{t} = e^{t\delta_{\mathcal{R}_{k}}}, \quad \delta_{0} = \delta_{\mathcal{S}} + \sum_{k=1}^{M} \delta_{\mathcal{R}_{k}}.$$

A1. Initial state. For any

$$X = (X_1, \dots, X_M) \in I_{\epsilon} =] - \epsilon, \epsilon[^M,$$

let $\omega_X^{(0)}$ be such that:

- $\omega_X^{(0)}\Big|_{\mathcal{O}_{\mathcal{R}_k}}$ is unique $(\tau_{\mathcal{R}_k}^t, \beta X_k)$ -KMS state.
- $\omega_X^{(0)}\Big|_{\mathcal{O}_S}$ is unique (τ_S^t, β) -KMS state.

To define heat fluxes we also need to assume

A2. Regularity of junction. $V \in \text{Dom}(\delta_{\mathcal{R}_k})$ for k = 1, ..., M.

The heat flux out of \mathcal{R}_k is given by

$$\Phi_k = \delta_{\mathcal{R}_k}(V).$$

Denote $\sigma_X^{(0)t}$ and σ_X^t the dynamics generated by

$$\delta_X^{(0)} = \delta_0 - \sum_{k=1}^M \frac{X_k}{\beta} \delta_{\mathcal{R}_k}, \quad \delta_X = \delta_X^{(0)} + i\lambda[V, \cdot].$$

 $\omega_X^{(0)}$ is unique $(\sigma_X^{(0)}, \beta)$ -KMS state (modular dynamics).

By Araki perturbation theory there is a unique (σ_X, β) -KMS state ω_X which is normal w.r.t. $\omega_X^{(0)}$ and thus has the same thermodynamics.

 $\sigma_{X=0} = \tau \implies \omega_{X=0} = \omega_{eq}$ is unique (τ, β) -KMS state.

Proposition 1. (A1) & (A2) imply the entropy balance equation

$$\operatorname{Ent}(\omega_X \circ \sigma_Y^t | \omega_X) = -\sum_{k=1}^M (X_k - Y_k) \int_0^t \omega_X \circ \sigma_Y^s(\Phi_k) ds.$$

Since $\sigma_{X=0} = \tau$, setting Y = 0 and $t \to \infty$ in this formula implies

$$\sum_{k=1}^{M} X_k \omega_{X+}(\Phi_k) \ge 0, \quad (2^{\mathrm{nd}} \operatorname{law of TD}).$$

Another important consequence of Proposition 1 is

Proposition 2. (A1) $\mathscr{C}(A2)$ imply that the fluxes Φ_k are centered: $\omega_X(\Phi_k) = 0$,

hold for k = 1, ..., M and all $X \in I_{\epsilon}$.

Proof. By the entropy balance equation

$$0 \leqslant -\lim_{t \to 0} \frac{\operatorname{Ent}(\omega_X \circ \sigma_Y^t | \omega_X)}{t} = \sum_{k=1}^M (X_k - Y_k) \omega_X(\Phi_k),$$

holds for any $X, Y \in I_{\epsilon}.\square$

4.2. Finite time Kubo formula

Proposition 3. $(A1) & (A2) \text{ imply that for any centered observable } A \in \mathcal{O} \text{ and}$ all $t \in \mathbb{R}$ the function

 $X \mapsto \omega_X(\tau^t(A)),$

is differentiable at X = 0 and

$$\partial_{X_k}\omega_X(\tau^t(A))\big|_{X=0} = \frac{1}{\beta} \int_0^t ds \int_0^\beta du \,\omega_{\text{eq}}(\tau^s(A)\tau^{iu}(\Phi_k)).$$

Sketch of proof. Follow the formal calculation! Step 1. Let

$$\Gamma_t = I + \sum_{n \ge 1} (i\lambda)^n \int_0^t dt_1 \int_0^{t_1} dt_2 \cdots \int_0^{t_{n-1}} dt_n \ \tau_0^{t_n}(V) \cdots \tau_0^{t_1}(V),$$

be the unitary cocycle

$$\tau^{t}(A) = \Gamma_{t}\tau_{0}^{t}(A)\Gamma_{t}^{*},$$

$$\partial_{t}\Gamma_{t} = i\Gamma_{t}\tau_{0}^{t}(V),$$

$$\partial_{t}\Gamma_{t}^{*} = -i\tau_{0}^{t}(V)\Gamma_{t}^{*}.$$

Using (A2) one sees that $\Gamma_t \in \text{Dom}(\delta_{\mathcal{R}_k})$, that $t \mapsto \delta_{\mathcal{R}_k}(\Gamma_t)$ is differentiable and that

$$\partial_t \delta_{\mathcal{R}_k}(\Gamma_t) = \delta_{\mathcal{R}_k}(\partial_t \Gamma_t) = \delta_{\mathcal{R}_k}(i\Gamma_t \tau_0^t(V)) = i\delta_{\mathcal{R}_k}(\Gamma_t)\tau_0^t(V) + i\Gamma_t \tau_0^t(\Phi_k).$$

It follows that

$$\partial_t(\delta_{\mathcal{R}_k}(\Gamma_t)\Gamma_t^*) = i\tau^t(\Phi_k),$$

and hence

$$\delta_{\mathcal{R}_k}(\Gamma_t)\Gamma_t^* = i \int_0^t \tau^s(\Phi_k) ds.$$

Computing

$$\delta_{\mathcal{R}_k}(\tau^t(A)) = \delta_{\mathcal{R}_k}(\Gamma_t \tau_0^t(A) \Gamma_t^*),$$

one immediately get

$$\delta_{\mathcal{R}_k}(\tau^t(A)) - \tau^t(\delta_{\mathcal{R}_k}(A)) = \int_0^t i[\tau^s(\Phi_k), \tau^t(A)] ds.$$
(2)

Set

$$P_X(t) = -\sum_{k=1}^{M} \frac{X_k}{\beta} \int_0^t \tau^{-s}(\Phi_k) ds,$$

and denote by $\alpha^{u}_{X,t}$ the dynamics generated by

$$\delta_{X,t} = \delta_X + i[P_X(t), \cdot].$$

Using (2) one checks that

$$\partial_u(\sigma^u_X \circ \tau^t(A)) = \sigma^u_X \circ \tau^t(\delta_{X,t}(A)),$$

which shows that $\tau^{-t} \circ \sigma_X^u \circ \tau^t = \alpha_{X,t}^u$, and hence that $\omega_X \circ \tau^t$ is $(\alpha_{X,t}, \beta)$ -KMS state.

Step 2. A simple application of Araki perturbation theory of KMS states yields

$$\begin{split} \omega_X(\tau^t(A)) &= \omega_X(A) \Biggl(1 - \sum_k X_k \int_0^t \omega_X(\tau^{-s}(\Phi_k)) ds \Biggr) \\ &+ \sum_k \frac{X_k}{\beta} \int_0^t ds \int_0^\beta du \ \omega_X(A\sigma_X^{iu}(\tau^{-s}(\Phi_k))) \\ &+ O(|tX|^2). \end{split}$$

Step 3. If A is centered it follows that

$$\omega_X(\tau^t(A)) - \omega_{X=0}(\tau^t(A)) = \sum_k \frac{X_k}{\beta} \int_0^t ds \int_0^\beta du \omega_X(A\sigma_X^{iu}(\tau^{-s}(\Phi_k))) + O(|tX|^2).$$

Step 4. Using the (σ_X, β) -KMS condition and approximation by σ_X -analytic elements one shows that

$$\lim_{X \to 0} \omega_X(A\sigma_X^{iu}(B)) = \omega_{\rm eq}(A\tau^{iu}(B)),$$

holds for all $A, B \in \mathcal{O}$ and $0 \leqslant u \leqslant \beta.\square$

4.3. The limit $t \to \infty$.

A3. NESS. For any $X \in I_{\epsilon}$ there exists a state ω_{X+} such that

$$\lim_{t \to \infty} \omega_X(\tau^t(A)) = \omega_{X+}(A),$$

for all $A \in \mathcal{O}$.

On physical grounds one expects that thermodynamically equivalent initial states lead to the same NESS i.e.,

$$\lim_{t \to \infty} \eta(\tau^t(A)) = \omega_{X+}(A),$$

for any ω_X -normal state η and in particular for the product state $\eta = \omega_X^{(0)}$.

We shall hide the main difficulty of a general proof of Kubo formula into

Definition 4. A centered observable $A \in \mathcal{O}$ is regular if $X \mapsto \omega_{X+}(A)$ is differentiable at X = 0 and

$$\partial_X \omega_{X+}(A)|_{X=0} = \lim_{t \to \infty} \partial_X \omega_X \circ \tau^t(A)|_{X=0}.$$

Proving regularity of an observable is a difficult dynamical problem which can only be solved within specific models. In practice, it can be checked with the help of

Lemma 5. Suppose $(A1) \mathcal{E}(A3)$ hold and the centered observable A is such that the function $X \mapsto \omega_X(A)$ has analytic extension to $D_{\epsilon} = \{X \in \mathbb{C}^M | \max_k |X_k| < \epsilon\}$ such that

$$\sup_{\geq 0, X \in D_{\epsilon}} |\omega_X(\tau^t(A))| < \infty,$$

then A is regular.

Keeping the exchange of limits problem out of our way we obtain

t

Theorem 6. $(A1) \mathcal{E}(A2) \mathcal{E}(A3)$ imply that, for any regular observable A, Kubo formula

$$\partial_{X_k}\omega_{X+}(A)|_{X=0} = \frac{1}{\beta} \int_0^\infty ds \int_0^\beta du \ \omega_{\rm eq}(\tau^s(A)\tau^{iu}(\Phi_k)),$$

holds.

4.4. Time reversal invariance

System is TRI if there exists involutive, *-anti-morphism θ on \mathcal{O} s.t.

$$\theta(\mathcal{O}_{\mathcal{S}}) = \mathcal{O}_{\mathcal{S}}, \quad \theta(\mathcal{O}_{\mathcal{R}_k}) = \mathcal{O}_{\mathcal{R}_k}, \quad \theta \circ \tau_0^t = \tau_0^{-t} \circ \theta, \quad \theta(V_k) = V_k.$$

A4. Mixing equilibrium state. For all $A, B \in \mathcal{O}$

$$\lim_{|t|\to\infty}\omega_{\rm eq}(A\tau^t(B)) = \omega_{\rm eq}(A)\omega_{\rm eq}(B).$$

Theorem 7. For TRI systems $(A1) \mathcal{E}(A2) \mathcal{E}(A3) \mathcal{E}(A4)$ imply that, for any regular observable A, Kubo formula

$$\partial_{X_k}\omega_{X+}(A)|_{X=0} = \frac{1}{2} \int_{-\infty}^{\infty} \omega_{eq}(\tau^s(A)\Phi_k)ds, \qquad (3)$$

holds.

Corollary 8. If the fluxes Φ_k are regular then Onsager reciprocity holds

$$\partial_{X_k}\omega_{X+}(\Phi_j)\big|_{X=0} = \partial_{X_j}\omega_{X+}(\Phi_k)\big|_{X=0}.$$

Proof. Onsager symmetry follows from Kubo formula (3) and the fact that (A4) implies the stability condition

$$\int_{-\infty}^{\infty} \omega_{\rm eq}([A, \tau^s(B)]) ds = 0,$$

for all $A, B \in \mathcal{O}.\square$

Proof of Theorem 7. TRI and (A1) give $\omega_{eq}(\theta(A)) = \omega_{eq}(A^*)$ for $A \in \mathcal{O}$. KMS condition further give

$$\omega_{\rm eq}(\tau^s(A)\tau^{iu}(B)) = \omega_{\rm eq}(\tau^{-s}(A)\tau^{i(\beta-u)}(B)),$$

for $0\leqslant u\leqslant\beta$ and thus

$$\frac{1}{\beta} \int_0^\beta \bigg(\int_0^t \omega_{\rm eq}(\tau^s(A)\tau^{iu}(B)) ds \bigg) du = \frac{1}{2\beta} \int_0^\beta \bigg(\int_{-t}^t \omega_{\rm eq}(A\tau^{s+iu}(B)) ds \bigg) du.$$

Since the integral of $z \mapsto \omega_{eq}(A\tau^z(B))$ over the boundary of [-t, t] + i[0, u] is zero we get

$$\frac{1}{\beta} \int_0^\beta \bigg(\int_0^t \omega_{\rm eq}(\tau^s(A)\tau^{iu}(B)) ds \bigg) du = \frac{1}{2} \int_{-t}^t \omega_{\rm eq}(A\tau^s(B)) ds + \frac{1}{2\beta} \int_0^\beta R(t,u) du,$$

where

$$R(t,u) = i \int_0^u \left(\omega_{\text{eq}}(A\tau^{t+iv}(B)) - \omega_{\text{eq}}(A\tau^{-t+iv}(B)) \right) dv.$$

Assumption (A4) and dominated convergence yield the result. \Box

5. Examples

5.1. Spin-Fermion models

Small system S. 2-level system

- Hilbert space $\mathcal{H}_{\mathcal{S}} = \mathbb{C}^2$.
- Hamiltonian $H_{\mathcal{S}} = \sigma_z$.
- Algebra $\mathcal{O}_{\mathcal{S}} = \mathcal{B}(\mathcal{H}_{\mathcal{S}}).$
- $\omega_{\mathcal{S}X}^{(0)}(\cdot) = Z_{\mathcal{S}}^{-1} \operatorname{tr} (e^{-\beta H_{\mathcal{S}}}(\cdot)).$

Reservoirs \mathcal{R}_k . Free Fermi gases at thermal equilibrium.

- One particle Hilbert space $\mathfrak{h}_k = L^2(\mathbb{R}_+, d\varepsilon) \otimes \mathfrak{K}_k$.
- One particle Hamiltonian h_k is multiplication by ε .
- Algebra $\mathcal{O}_{\mathcal{R}_k} = \operatorname{CAR}(\mathfrak{h}_k).$
- Dynamics $\tau_{\mathcal{R}_k}^t$ is Bogoliubov automorphism associated to h_k .
- $\omega_{\mathcal{R}_k X}^{(0)}$ is gauge-invariant quasi-free state with 2-point function

$$\omega_{\mathcal{R}_k X}^{(0)}(a^*(f)a(g)) = (g, (1 + e^{(\beta - X_k)h_k})^{-1}f).$$

Uncoupled joint system.

- Algebra $\mathcal{O} = \mathcal{O}_{\mathcal{S}} \otimes \mathcal{O}_{\mathcal{R}_1} \otimes \cdots \otimes \mathcal{O}_{\mathcal{R}_M}$.
- Dynamics $\tau_0^t = \tau_{\mathcal{S}}^t \otimes \tau_{\mathcal{R}_1}^t \otimes \cdots \otimes \tau_{\mathcal{R}_M}^t$.
- Initial state $\omega_X^{(0)} = \omega_{\mathcal{S}X}^{(0)} \otimes \omega_{\mathcal{R}_1X}^{(0)} \otimes \cdots \otimes \omega_{\mathcal{R}_MX}^{(0)}$.

Coupling. Trough field operators $\varphi_k(f) = 2^{-1/2}(a_k^*(f) + a_k(f))$:

 $V_k = \lambda \sigma_x \otimes \varphi_k(\alpha_k),$

with $\alpha_k \in \mathfrak{h}_k$. Coupled dynamical system $(\mathcal{O}, \tau_{\lambda}^t)$.

There exists conjugation c_k on \mathfrak{h}_k such that $c_k \alpha_k = \alpha_k \longrightarrow$ The system is TRI.

To $f_k \in \mathfrak{h}_k$ we associate $f_k \in L^2(\mathbb{R}, d\varepsilon) \otimes \mathfrak{K}_k$ given by

$$\tilde{f_k}(\varepsilon) = \begin{cases} f_k(\varepsilon) & \text{if } \varepsilon \ge 0, \\ (c_k f_k)(|\varepsilon|) & \text{if } \varepsilon < 0. \end{cases}$$

Denote by $H^2(\delta; \mathfrak{K}_k)$ the Hardy space of analytic function

$$f: \{z \in \mathbb{C} \mid |\operatorname{Im} z| < \delta\} \to \mathfrak{K}_k.$$

We shall assume:

S1. Analyticity. For some $\delta > 0$ and $\kappa > \beta$ and all k

 $e^{-\kappa z} \tilde{\alpha}_k(z) \in H^2(\delta; \mathfrak{K}_k).$

S2. Effective coupling. $\|\alpha_k(2)\|_{\mathfrak{K}_k} > 0$ for all k.

Denote by $\tilde{\mathcal{O}}$ the *-subalgebra generated by elements of the form $Q \otimes a_k(f_k),$

where $Q \in \mathcal{O}_{\mathcal{S}}$ and $f_k \in \mathfrak{h}_k$ is such that, for some $b > (\kappa + \beta)/2$,

$$e^{-b\varepsilon}\tilde{f}_k(\varepsilon) \in H^2(\delta;\mathfrak{K}_k).$$

Using C-Liouvillean techniques one can prove the following

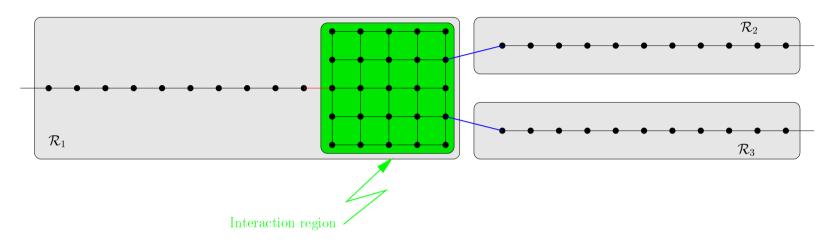
Theorem 9. Under Assumptions $(S1) \mathcal{E}(S2)$ there exists $\Lambda > 0$ such that, for $0 < |\lambda| < \Lambda$, Assumptions (A1)-(A4) are satisfied and

$$\lim_{t \to \infty} \eta(\tau_{\lambda}^t(A)) = \omega_{X+}(A),$$

holds for any $\omega_X^{(0)}$ -normal state η . Moreover, any centered observable $A \in \tilde{O}$ is regular and $\Phi_k \in \tilde{O}$.

Similar result hold for more general N-level systems coupled to Fermionic reservoirs.

5.2. Locally interacting Fermi gases



Free Fermi gas with

- One particle Hilbert space $\mathfrak{h} = \mathfrak{h}_{\mathcal{R}_1} \oplus \cdots \oplus \mathfrak{h}_{\mathcal{R}_M}$.
- One particle Hamiltonian $h = h_{\mathcal{R}_1} \oplus \cdots \oplus h_{\mathcal{R}_M}$.
- Algebra $\mathcal{O} = \operatorname{CAR}(\mathfrak{h})$.
- Bogoliubov decoupled dynamics τ_0^t generated by h.

• Initial state $\omega_X^{(0)}$: quasi-free gauge-invariant with 2-points function

$$\omega_X^{(0)}(a^*(f)a(g)) = (g, T_X^{(0)}f),$$
$$T_X^{(0)} = \bigoplus_{k=1}^M (1 + e^{(\beta - X_k)h_{\mathcal{R}_k}})^{-1}.$$

• Local interaction

$$V = V^* = \lambda \sum_{k=1}^{K} \prod_{j=1}^{n_k} a^*(u_{k,j}) a(v_{k,j}) \in CAR^+(\mathfrak{h}),$$

with $u_{k,j}, v_{k,j} \in \mathfrak{h} \longrightarrow$ perturbed coupled dynamics τ_{λ}^t .

We shall assume:

L1. The channel Hamiltonians h_k have purely a.c. spectra.

L2. There exists a dense subspace $\mathcal{D} \subset \mathfrak{h}$ such that

- $u_{k,j}, v_{k,j}, h_l u_{k,j}, h_l v_{k,j} \in \mathcal{D}$ for all k, j, l.
- For any $f, g \in \mathcal{D}$

$$\int_{-\infty}^{\infty} |(f, e^{ith}g)| dt < \infty.$$

Theorem 10. If $(L1) \mathcal{E}(L2)$ hold there exists $\Lambda > 0$ such that, for $0 < |\lambda| < \Lambda$ the Møller morphism

$$\gamma_+ = s - \lim_{t \to \infty} \tau_0^{-t} \circ \tau_\lambda^t,$$

exists and is a *-automorphism of \mathcal{O} . For any $\omega_X^{(0)}$ -normal state η one has

$$\lim_{t \to \infty} \eta \circ \tau_{\lambda}^{t}(A) = \omega_{X+}(A) = \omega_{X}^{(0)} \circ \gamma_{+}(A).$$

Moreover, any centered observable of the type

$$A = \sum_{k} a^{\#}(f_{k,1}) \cdots a^{\#}(f_{k,n_{k}}),$$

with $f_{k,j} \in \mathcal{D}$ is regular. In particular, the heat fluxes Φ_k are regular.