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1. Thermally driven open quantum systems

Ry

Small system S — spatially confined, discrete spectrum
ideal thermal reservoirs Rq,..., Ryr — spatially extended ideal quantum gases

junctions — interactions between & and Ry.



Conserved extensive quantities Ay of Ry (e.g. energy Hp,, mass Mpg,, charge
QR,, ---) can cross the junction and flow through the system S&. The corre-
sponding outgoing fluxes are

d A .
by =——— =—|H, ALl
At joint thermal equilibrium
<(I)Ak>eq =0.

Under the joint dynamics initial state ( - ), with inhomogeneous intensive ther-
modynamic parameters evolves towards steady state ( - which may support
non-trivial currents

)+

<(I)Ak;>+ 7é 0.

Calculating these currents is the main problem of Non-Equilibrium Statistical
Mechanics of Open Quantum Systems.



2. NESS: Formal calculations of steady currents

A. Master equation techniques (Einstein 1917, Pauli 1928, van Hove 1962, ...).
Weak junctions — Effective Markovian dynamics for the occupation numbers
n. of the discrete energy levels w of S.

B. Landauer-Biittiker formula (Landauer 1957, Biittiker 1986).
Neglect interactions in the joint system —— One body problem. Steady charge
currents given by the scattering matrix elements Si;(w) between R; and Ry

(®0,), = [ tru(S@)F)S@)  F() 2

C. Schwinger—Keldysh formalism (Schwinger 1961, Keldysh 1965).
Special form of perturbation theory. Book-keeping device to generate diagram-
matic expansion of the steady state

tr(e_(ZkﬁkHRk+ﬁsHs)eithot( . ) _ithot>

(-), = lim €
+ _t—>oo tr (6_(Zk5RkHRk+5sHs))



3. NESS: Mathematical constructions

Framework: Perturbation theory of C*-dynamical systems.

Decoupled system (O, 75, () o): O is a C*-algebra, & =e!% a strongly continuous
group of *-automorphisms of O, (), a r¢-invariant state.
Sub-algebras structure: O, C O, a=85,R4, ..., R,

OqNOqr={I} for a+a’,
O=0sVOr=0sV (Or,V--VOgr,,),

5(04) = O,.
Coupling:

M
V=) Wi, Vi=Vi€OsVOxg,
k=1

Coupled system (O, 75): Locally perturbed dynamics
T§:€t5>\7 5>\:50+7’)‘[V7 ']7
with junction strength A € R.



A. The van Hove limit.

Rigorous derivation of master equation for & from microscopic dynamics
of the joint system on time scale \~2 (Davies 1974): For As € Os,

1.<—t/2 t/2A>:tﬁA,
lim (7 7" o (As) ) | =€ (As)
defines a quantum Markov semi-group. NESS is obtained by solving
L*p=0.

Thermodynamics of weakly coupled open systems, including linear
response theory (Lebowitz-Spohn 1978).

The van Hove limit gives for the currents to in
the junction strength

Extension of the convergence to the joint system (Derezinski-De Roeck
2006) connection with quantum stochastic differential equations.



B. Scattering approach (Ruelle 2000)

If the Mgller morphism
Or 3 A ny(A) = lim 77 o §(A),

t— o0
exist and is an isomorphism between Ox and O (completeness of C*-scat-
tering) then

(A), = Tim (r5"or{(4)), = (nz'(A))

t— 00

RO

In the special case of noninteracting fermions 7§ and 7{ are groups of
Bogoliubov automorphisms generated by one-particle Hamiltonians Ay and
hy. The formula

(a*(fla(g)) = (@"(Q=f)a(29)) o

together with Wick theorem completely describes the NESS. Landauer-
Biittiker formula is an elementary consequence of it.



C. C-Liouvillean approach (Jaksi¢—P 2002)

(H,m, Q) GNS representation of O associated to (-),.

is modular i.e.,

AQ=0 = A=0,

Assumption: (- ),

for all A€ w(O)” (true if each reservoir is in thermal equilibrium).

For sufficiently regular V' one can construct the C-Liouvillean L s.t.
LyQ=0, ethag(A)e tx=x(r{(A)).
NESS is obtained as zero-resonance of L}: if
LAU,=0, (¥,,Q)=1,
then, for sufficiently regular A € O:
(A) = (U, m(A)Q).

The C-Liouvillean approach is well suited for perturbative analysis. In a way it
can be considered as a rigorous implementation of Schwinger-Keldysh formalism.



3. Linear response to thermal drive — generalities

" ‘ NS\ 0 R
RM’ﬁXA]/\/

Thermodynamic force X, +— Conjugated flux

!

Entropy production rate o =3, X,

Transport coefficients:
Lij=0x

Mean entropy production rate:

<0>+:Z Xk< >_|_:Z L/ijka+O<|X|2>>O'
2 kg

>+‘X:o'
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Kubo formula (Kubo 1957, Kubo—Yokota—Nakajima 1957, Luttinger 1964):

ij:%/o dS/O du <7'$((I)k)7'zu((bj)>eq.

For TRI systems one has the equivalent nicer looking formula

1 0@
ij:§/ ds<7'3(<I>k)<I>j>eq,

and the Onsager reciprocity relations (Onsager 1931):
Lyj= L.

More generally, for conserved extensive observables Ax of Ry

00 6] .
8Xj<q)Ak>+‘X:0:%/o ds/o du <TS(<I>Ak)TZ“(CI>j)> :

eq

and for TRI system if Ag is even under time reversal

1 oo
5’Xj<<I>Ak>+|X:O:§/ ds(T°(Pa,) L))y

— o0
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Proving Kubo formula 7

2 conceptually distinct cases:
e Mechanical drive: Perturbing the dynamics by external fields
—  Time dependent perturbation theory.

e¢ Thermal drive: Perturbing the initial state. Formal derivations based on
disputable

—  Local thermal equilibrium.

—  Emtropy production argument.

We propose a mechanical treatment of thermal drive:

After a finite time ¢ the perturbation of initial state is equivalent to
the action of some external field.

(Zubarev, 1974; Tasaki—-Matsui 2001).

12



4. Linear response — formal calculation

Open quantum system driven by temperature differentials
(adaptation to other thermal forces is easy !).

e H=Hs+Hr+AV=Hs+Y , Hr, +\V=HY+ V.

e Equilibrium state at inverse temperature

1
—8H
Zeq€ .

e Initial product state

0 _ 1 —(BHs+S (8- X0Hry) _ L —pu®

w — ——e¢ :
A A%
with X =(Xq,...., X)) is Gibbs state for
M
X
HY =H© -} %an.
e Heat fluxes =t
dHR,

B, = — — —i[H,Hg,] =i\Hg,,V].

dt
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Step 0. Since the junction V is local the Gibbs state

M
Wy = o= BHx Hy=H{ +\WW=H-Y"

Zx k=1
(0)

is thermodynamically equivalent to wy’, wx—0 = weq-

Ak

6 HRka

Step 1. wx is Gibbs state for Hy = wx o 7! is Gibbs state for

—t _ _ = & tT—s g =
Ft(Hy) = Hy ; ﬁ/o (®))ds = Hx + Px(t). (1)

Step 2. By Duhamel formula

6]
e—B(HX+PX(t)):6—BHX_/ Ogg(pX(t))e—ﬁdeu_i_O(PX(t)Q%
0

where o’ is the dynamics generated by Hyx. It follows that

wx(THA)) = wx(A)
M Xk t b LU -— 8 2
+ k§:1 7/0 ds/o duwx (Ao (T7%(Pk))) + O(|X 7).
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Step 3. Observable A is centered if wx(A) =0 for all X near X = 0. Since
wx —o is a Gibbs state for H we have wx—o(7%(A)) =wx—0(A) =0, hence

wx (TH(A)) — wx —o(rH(A)) / ds/ duwy (Acit(r—5(D))
|X|

Step 4. Since Hx—o=H, wx—0=wWeq and ox—o=T7

Jm wx (AT (T75(Pr))) = weq (AT ™5 14(Dp)) = weq (T5(A)T"(Dy)),

and we get

Ox,wx (T ‘X 0 ﬁ_/ ds/ duweq (T5(A)T"%(Pg)).
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Step 5. Assume now that NESS
lim wx(74(A)) =wx(A),

t— o0

exists. Exchange of the ¢t — oo limit with Ox, leads to Kubo formula

00 G _
8kaX+(A)|X:0:%/O ds/o duweq(T°(A)T"(Pk)).

Remark 1. 3 crucial points:
e Step 0: Choice of reference state wyx.

e Step 3: Observable A must be centered !
e Step 5: Exchange of limits.

Remark 2. Taking ¢t — oo in (1) leads to Zubarev-MacLennan ensemble

wX+ — %G_IBHX+ZkaIOOOTS(CDk)dS
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4. Linear response — an axiomatic approach

4.1. Entropy balance and its consequences

Decoupled dynamics (O, 75)

t __ _t t _ _t
TS_TO|(937 T’Rk_TO|ORk7

M
£
Téi=et% rh=els 1L =eRx 502534—5 OR,.-
k=1

A1l. Initial state. For any
X=(Xy,...Xy)el.=]—e, €M,
let w&?) be such that:

o wg?)‘ is unique (ngk, B — X)-KMS state.

Or,

o wg?)|08 is unique (75, 3)-KMS state.
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To define heat fluxes we also need to assume

A2. Regularity of junction. V € Dom(ég,) for k=1,..., M.

The heat flux out of Ry is given by

S =0r, (V).
Denote ag?)t and o’ the dynamics generated by
X
60 =6-Y 7’“5% Ox =0 +iA[V, -]
k=1

wg?) is unique (ag?), )-KMS state (modular dynamics).

By Araki perturbation theory there is a unique (ox, 3)-KMS state wx which is

(0)
X

normal w.r.t. wy’ and thus has the same thermodynamics.

Ox—0=T = Wx—0=Weq is unique (7, B)-KMS state.
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Proposition 1. (A1)&(A2) imply the entropy balance equation
¢
Ent(wx oo |wx)= Z (X5 — Yi) / wx ooy (Pk)ds.
=1 0

Since ox—g=T, setting Y =0 and {— oo in this formula implies

Y Xpwx (Pr) =0, (2"lawof TD).
k=1

Another important consequence of Proposition 1 is

Proposition 2. (A1)&(A2) imply that the fluzes @y are centered:
wx(Pr) =0,

hold for k=1,....M and all X € I..

Proof. By the entropy balance equation

Ent(wyoob|wyx) <
0< —lim = g (Xk: — Yk>wX((I)k>7
t=0 t k=1

holds for any X,Y € I..[1]
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4.2. Finite time Kubo formula

Proposition 3. (A1)&(A2) imply that for any centered observable A € O and
all t € R the function

X —wx(TH(A)),
s differentiable at X =0 and

Ox,wx (T ’X 0 5/ ds/ du weq (T5(A) T (Dy)).

Sketch of proof. Follow the formal calculation!
Step 1. Let

t1 tn—1
Li=1+Y (iA)" /dt1/ dty - / dt, 7" (V)- i (V),
n>1

be the unitary cocycle

Ti(A) = Tyr§(A)Ty,
0trt = ZFﬂ'(%(V)
(

oy = —ird
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Using (A2) one sees that I'; € Dom(dz,), that ¢t — dg (I';) is differentiable and
that

5’t5Rk(Ft) = 5Rk(8tl“t) = 5Rk(iFtTS(V>> = ’i(SRk(Ft)Tg(V) + ’iFtTg(q)k).
It follows that
Oi(Or, (T)TF) =it (Py),

and hence

t
5re (T)TE = i / -5(Dy)ds.
. 0
Computing

Or(TH(A)) = 0r, (Temo(A)TT),

one immediately get

O, (T'(A)) = T'(6R.(A)) = /Ot i[7%(Pk), 7' (A)]ds. (2)

and denote by ax ; the dynamics generated by

(SX,t:dx—l—i[Px(t), . ]

Set
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Using (2) one checks that

Ou(c% o7t (A))=0% o7 (dx +(A)),

which shows that 77" o 0% o 7" = o 4, and hence that wx o 7" is (ax +, §)-KMS
state.

Step 2. A simple application of Araki perturbation theory of KMS states yields

wx(TtH(A)) = <1—ZXk/ wx (T 8(<I>k))ds>
X 1U(-—S
+ ka/o ds/o du wx (Ao (177%(Pg)))
)

k
+ O]t X)?).

Step 3. If A is centered it follows that
t le zu =8
wx (TH(A)) — wx ol Z / ds/ duwx (Aot (r—5(@p))) + O(|t X |2).
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Step 4. Using the (ox, 8)-KMS condition and approximation by ox-analytic
elements one shows that

lim wy(Ao(B)) = weq(AT(B)),

holds for all A, B€ O and 0 <u < (6.0
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4.3. The limit t — oo.

A3. NESS. For any X € I, there exists a state wx 4 such that

lim wx(74(A)) =wx(A),

t— o0

for all A€ O.

On physical grounds one expects that thermodynamically equivalent initial
states lead to the same NESS i.e.,

lim 7(r'(A)) = wx +(A).

t— o0

for any wx-normal state n and in particular for the product state n :wg?).

We shall hide the main difficulty of a general proof of Kubo formula into

Definition 4. A centered observable A € O is reqular if X — wx 1+ (A) is differen-
tiable at X =0 and

8wa+(A)|X:O — lim Oxwx oTt(A)’X:O'

t— o0
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Proving regularity of an observable is a difficult dynamical problem which can

only be solved within specific models. In practice, it can be checked with the
help of

Lemma 5. Suppose (A1)E6(A3) hold and the centered observable A is such that
the function X — wx(A) has analytic extension to D.={X € CM|max;, |X| <€}
such that

sup  Jwx (7°(4))[ < oo,

, t>0,X €D,
then A is regular.

Keeping the exchange of limits problem out of our way we obtain

Theorem 6. (A1)E(A2)6(A3) imply that, for any reqular observable A, Kubo
formula

1 [ 7 .
Oxeoxt(@lyo=75 [ ds [ duw(r @),
holds.
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4.4. Time reversal invariance

System is TRI if there exists involutive, *-anti-morphism 6 on O s.t.

(9(03)203, Q(Onk>:(9nk, QOT(%:TO_tOQ, 9<Vk>:Vk

A4. Mixing equilibrium state. For all A, B€ O

lim Weq(ATHB)) = Weq(A)weq(B).

[t]—o0

Theorem 7. For TRI systems (A1)6(A2)E(A3)E(A4) imply that, for any reg-
ular observable A, Kubo formula

Oxox+Wlxog=y [ cualr(DB0ds (3)

— o0

holds.

Corollary 8. If the fluxes ®;. are reqular then Onsager reciprocity holds
Ox,wx +(P5)| x _o=0x,wx +(Pk)| _

26



Proof. Onsager symmetry follows from Kubo formula (3) and the fact that (A4)
implies the stability condition

/ 7 (A, (B ds =0,

—

for all A, Be O.U]
Proof of Theorem 7. TRI and (A1) give weq(0(A)) =weq(A*) for A€ O.
KMS condition further give

weq(T5(A)T(B)) = weq (1~ *(A) 7P =)(B)),

for 0 <u < B and thus

5/ (/ Weq (T (A)Ti“(B))ds>du:%/OB (/_tt weq(ATS““(B))ds)du.

Since the integral of z — weq(AT*(B)) over the boundary of [ — ¢, t] + [0, u] is
zero we get

ﬁ/ </ Wea(T (A)Tiu(B))dS)dU:%/_ttweq(ATS(B))ds—l—z—lﬁ " R(t,u)du,

27



where

R(t,u) =i /0 " (weq(ATH(B)) — wog (Ar—1+1%(B)) ) do.

Assumption (A4) and dominated convergence yield the result.[]
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5. Examples

5.1. Spin-Fermion models
Small system S. 2-level system
e Hilbert space Hs = C>.
e Hamiltonian Hs=o0..
e Algebra Os=B(Hs).
o WSk(-)=Z5'tr (e MMs()).

Reservoirs Rg. Free Fermi gases at thermal equilibrium.
e One particle Hilbert space b, =L*(IRy,de) ® Rj.
e One particle Hamiltonian hj is multiplication by e.

o Algebra Or, =CAR(bg).

e Dynamics 7%, is Bogoliubov automorphism associated to hy.

° wgi x 18 gauge-invariant quasi-free state with 2-point function

W (a*(falg)) = (g, (1+ eB=XKhe)=1 p)

29



Uncoupled joint system.
o Algebra O=0s®0r, Q- Q@0Or,,-
e Dynamics T6:T§®T7tgl®“'®7'7th.

e Initial state wﬁ?) = wgo))( X w%? ¥R ® W7(g1)\4X~

Coupling. Trough field operators ¢i(f)=2"12(ai(f) + ar(f)):
Vk‘ — )\Ux ® Spk‘(ak%

with ay, € . Coupled dynamical system (O, 75).

There exists conjugation c; on hi such that cyar =ar — The system is TRI.
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To fi € by we associate fi € L2(R, de) ® K given by

v fxle) if €20,
fk(g)—{ (gkfk)(|e|) if £<0.

Denote by H?(d; &) the Hardy space of analytic function
f:{zeC||lmz|<d} — Rk.

We shall assume:

S1. Analyticity. For some 6 >0 and k> (3 and all k
e "a, (z) € H?(5; Ry,).

S2. Effective coupling. |[ax(2)||g, >0 for all k.

Denote by O the x -subalgebra generated by elements of the form

Q@ ar([fr),
where Q € Os and fi € by is such that, for some b> (k + (3)/2,

e fr(e) € H2(8; Ry).
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Using C-Liouvillean techniques one can prove the following

Theorem 9. Under Assumptions (S1)€(S2) there exists A > 0 such that, for
0<|A| <A, Assumptions (Al1)-(A4) are satisfied and

lim 7(r(A)) =wx 1 (4),

t— 00

holds for any wé?)—normal state n. Moreover, any centered observable A &€ O is

reqular and Py € O.

Similar result hold for more general N-level systems coupled to
Fermionic reservoirs.
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5.2. Locally interacting Fermi gases

R

Interaction region %

Free Fermi gas with
e One particle Hilbert space h=hgr, - Bbhr,,-
e One particle Hamiltonian h=hg, ® - ® hr,,.

e Algebra O =CAR(b).

e Bogoliubov decoupled dynamics 74 generated by h.
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e Initial state wg?): quasi-free gauge-invariant with 2-points function

e Local interaction
K
V:V*:)\Z a*(ug j)a(vg, ;) € CART(h),

with uy j,vr ; €H — perturbed coupled dynamics i

34



We shall assume:
L1. The channel Hamiltonians h; have purely a.c. spectra.
L2. There exists a dense subspace D C h such that
® Uk j,Vk j,ug, j,hvg, ;€D forall k, 7,1
e Forany f,geD

/OO (f, €ithg)| dt < oo,

— o0

Theorem 10. If (L1)6(L2) hold there exists A >0 such that, for 0 <|\| <A the

Mgller morphism

(0)

exists and 15 a * -automorphism of O. For any wyx’ -normal state n one has

Y+=8— lim 74

t— 00

lim no7i(A) =wx(4)=w{ o (A).

t— o0

Moreover, any centered observable of the type

A= Z o™ (fie,1) 0™ ( fie,nn);
k

with fi ; €D s reqular. In particular, the heat fluxes P are regular.
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