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1. Thermally driven open quantum systems

S

RM

R1

R2

Rk

Small system S — spatially confined, discrete spectrum
coupled to

ideal thermal reservoirs R1,� ,RM — spatially extended ideal quantum gases
trough

junctions — interactions between S and Rk.
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Conserved extensive quantities Ak of Rk (e.g. energy HRk
, mass MRk

, charge
QRk

, ...) can cross the junction and flow through the system S. The corre-
sponding outgoing fluxes are

ΦAk
=−

d Ak

dt

∣

∣

∣

∣

t=0

=− i[H, Ak].

At joint thermal equilibrium

〈ΦAk〉eq = 0.

Under the joint dynamics initial state 〈 · 〉0 with inhomogeneous intensive ther-
modynamic parameters evolves towards steady state 〈 · 〉+ which may support
non-trivial currents

〈ΦAk〉+� 0.

Calculating these currents is the main problem of Non-Equilibrium Statistical
Mechanics of Open Quantum Systems.
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2. NESS: Formal calculations of steady currents

A. Master equation techniques (Einstein 1917, Pauli 1928, van Hove 1962, ...).
Weak junctions � Effective Markovian dynamics for the occupation numbers
nω of the discrete energy levels ω of S.

B. Landauer-Büttiker formula (Landauer 1957, Büttiker 1986).
Neglect interactions in the joint system � One body problem. Steady charge
currents given by the scattering matrix elements Skl(ω) between Rl and Rk

〈

ΦQRk

〉

+
=

∫

trRk
(S(ω)f(ω)S(ω)∗− f(ω))

dω

2π
.

C. Schwinger–Keldysh formalism (Schwinger 1961, Keldysh 1965).
Special form of perturbation theory. Book-keeping device to generate diagram-
matic expansion of the steady state

〈 · 〉+ = lim
t→∞

tr(e−(

P
k
βkHRk

+βSHS)
eitHt o t( · )e−itHt o t)

tr (e−(

P
k
βRk

HRk
+βSHS))

.
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3. NESS: Mathematical constructions

Framework: Perturbation theory of C∗-dynamical systems.

Decoupled system (O, τ0
t, 〈 · 〉0): O is a C∗-algebra, τ0

t = etδ0 a strongly continuous
group of ∗ -automorphisms of O, 〈 · 〉0 a τ0

t-invariant state.
Sub-algebras structure: Oα⊂O, α =S ,R1,� ,RM,

Oα∩Oα′ = {I} for α� α′,

O=OS ∨OR=OS ∨ (OR1∨� ∨ORM
),

τ0
t(Oα)=Oα.

Coupling:

V =
∑

k=1

M

Vk, Vk = Vk
∗∈OS ∨ORk

.

Coupled system (O, τλ
t): Locally perturbed dynamics

τλ
t = etδλ, δλ = δ0 + iλ[V , · ],

with junction strength λ∈R.
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A. The van Hove limit.

• Rigorous derivation of master equation for S from microscopic dynamics
of the joint system on time scale λ−2 (Davies 1974): For AS ∈OS,

lim
λ→0

〈

τ0
−t/λ2

◦ τλ
t/λ2

(AS)
〉

R 0
= etL(AS),

defines a quantum Markov semi-group. NESS is obtained by solving
L∗ρ = 0.

• Thermodynamics of weakly coupled open systems, including linear
response theory (Lebowitz-Spohn 1978).

• The van Hove limit gives exact results for the currents to second order in
the junction strength λ.

• Extension of the convergence to the joint system (Derezinski–De Roeck
2006) connection with quantum stochastic differential equations.
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B. Scattering approach (Ruelle 2000)

• If the Møller morphism

OR∋A� η+(A)= lim
t→∞

τλ
−t ◦ τ0

t(A),

exist and is an isomorphism between OR and O (completeness of C∗-scat-
tering) then

〈A〉+ = lim
t→∞

〈

τ0
−t◦ τλ

t(A)
〉

0
=
〈

η+
−1(A)

〉

R 0
.

• Fairly well understood perturbation theory (Botvich-Malyshev 1983)
allows to handle locally interacting Fermions! (Fröhlich–Merkli–Ueltschi
2004).

• In the special case of noninteracting fermions τ0
t and τλ

t are groups of
Bogoliubov automorphisms generated by one-particle Hamiltonians h0 and
hλ. The formula

〈a∗(f)a(g)〉+ = 〈a∗(Ω−
∗ f)a(Ω−

∗ g)〉R 0,

together with Wick theorem completely describes the NESS. Landauer-
Büttiker formula is an elementary consequence of it.
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C. C-Liouvillean approach (Jakšić–P 2002)

(H, π, Ω) GNS representation of O associated to 〈 · 〉0.

Assumption: 〈 · 〉0 is modular i.e.,

AΩ = 0 � A = 0,

for all A∈π(O)′′ (true if each reservoir is in thermal equilibrium).

For sufficiently regular V one can construct the C-Liouvillean L s.t.

LλΩ = 0, eitLλπ(A)e−itLλ = π(τλ
t(A)).

NESS is obtained as zero-resonance of Lλ
∗: if

Lλ
∗Ψλ = 0, (Ψλ, Ω)= 1,

then, for sufficiently regular A∈O:

〈A〉+ = (Ψλ, π(A)Ω).

The C-Liouvillean approach is well suited for perturbative analysis. In a way it
can be considered as a rigorous implementation of Schwinger-Keldysh formalism.
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3. Linear response to thermal drive — generalities

S

R1, β − X1

Rj, β − Xj

RM , β − XM

Rk, β − Xk

Φk

Thermodynamic force Xk � Conjugated flux Φk

l
Entropy production rate σ =

∑

k
XkΦk

Transport coefficients:

Lkj = ∂Xj〈Φk〉+

∣

∣

∣

X=0
.

Mean entropy production rate:

〈σ〉+ =
∑

k

Xk〈Φk〉+ =
∑

kj

LkjXkXj + O(|X |2)> 0.
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Kubo formula (Kubo 1957, Kubo–Yokota–Nakajima 1957, Luttinger 1964):

Lkj =
1

β

∫

0

∞

ds

∫

0

β

du
〈

τ s(Φk)τ
iu(Φj)

〉

eq
.

Here and in the sequel τ = τλ denotes the coupled dynamics.

For TRI systems one has the equivalent nicer looking formula

Lkj =
1

2

∫

−∞

∞

ds〈τ s(Φk)Φj〉eq,

and the Onsager reciprocity relations (Onsager 1931):

Lkj = Ljk.

More generally, for conserved extensive observables Ak of Rk

∂Xj〈ΦAk〉+

∣

∣

∣

X=0
=

1

β

∫

0

∞

ds

∫

0

β

du
〈

τs(ΦAk
)τ iu(Φj)

〉

eq
,

and for TRI system if Ak is even under time reversal

∂Xj〈ΦAk〉+

∣

∣

∣

X=0
=

1

2

∫

−∞

∞

ds〈τ s(ΦAk
)Φj〉eq.
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Proving Kubo formula ?

2 conceptually distinct cases:

• Mechanical drive: Perturbing the dynamics by external fields

→ Time dependent perturbation theory.

• Thermal drive: Perturbing the initial state. Formal derivations based on
disputable

→ Local thermal equilibrium.

→ Entropy production argument.

We propose a mechanical treatment of thermal drive:

After a finite time t the perturbation of initial state is equivalent to
the action of some external field.

(Zubarev, 1974; Tasaki–Matsui 2001).

12



4. Linear response — formal calculation

Open quantum system near equilibrium driven by temperature differentials
(adaptation to other thermal forces is easy !).

• H = HS + HR+ λV = HS +
∑

k
HRk

+ λV = H(0) + λV .

• Equilibrium state at inverse temperature β

ωeq =
1

Zeq
e−βH.

• Initial product state

ωX
(0) =

1

ZX
(0)

e
−(βHS+

P
k
(β−Xk)HRk

) =
1

ZX
(0)

e−βHX
(0)

,

with thermodynamic forces X = (X1,� , XM) is Gibbs state for

HX
(0) = H(0)−

∑

k=1

M
Xk

β
HRk

.

• Heat fluxes

Φk =−
dHRk

dt
=− i[H, HRk

] = iλ[HRk
, V ].
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Step 0. Since the junction V is local the Gibbs state

ωX =
1

ZX
e−βHX, HX = HX

(0) + λV = H −
∑

k=1

M
Xk

β
HRk

,

is thermodynamically equivalent to ωX
(0)

, ωX=0 = ωeq.

Step 1. ωX is Gibbs state for HX � ωX ◦ τ t is Gibbs state for

τ−t(HX) = HX −
∑

k=1

M
Xk

β

∫

0

t

τ−s(Φk)ds = HX + PX(t). (1)

Step 2. By Duhamel formula

e−β(HX+PX(t)) = e−βHX −

∫

0

β

σX
iu(PX(t))e−βHXdu + O(PX(t)2),

where σX
t is the dynamics generated by HX. It follows that

ωX(τ t(A)) = ωX(A)

+
∑

k=1

M
Xk

β

∫

0

t

ds

∫

0

β

du ωX(AσX
iu(τ−s(Φk))) + O(|X |2).
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Step 3. Observable A is centered if ωX(A) = 0 for all X near X = 0. Since
ωX=0 is a Gibbs state for H we have ωX=0(τ

t(A)) = ωX=0(A) = 0, hence

ωX(τ t(A))−ωX=0(τ
t(A)) =

∑

k=1

M
Xk

β

∫

0

t

ds

∫

0

β

du ωX(AσX
iu(τ−s(Φk)))

+ O(|X |2).

Step 4. Since HX=0 = H , ωX=0 = ωeq and σX=0 = τ

lim
X→0

ωX(AσX
iu(τ−s(Φk)))= ωeq(Aτ−s+iu(Φk))= ωeq(τs(A)τ iu(Φk)),

and we get

∂Xk
ωX(τ t(A))

∣

∣

X=0
=

1

β

∫

0

t

ds

∫

0

β

duωeq(τ s(A)τ iu(Φk)).
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Step 5. Assume now that NESS

lim
t→∞

ωX(τ t(A))= ωX +(A),

exists. Exchange of the t→∞ limit with ∂Xk
leads to Kubo formula

∂Xk
ωX +(A)|

X=0 =
1

β

∫

0

∞

ds

∫

0

β

duωeq(τ
s(A)τ iu(Φk)).

Remark 1. 3 crucial points:

• Step 0: Choice of reference state ωX.

• Step 3: Observable A must be centered !

• Step 5: Exchange of limits.

Remark 2. Taking t→∞ in (1) leads to Zubarev-MacLennan ensemble

ωX + =
1

Z
e
−βHX+

P
k
Xk

R
−∞

0
τs(Φk)ds

.
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4. Linear response — an axiomatic approach

4.1. Entropy balance and its consequences

Decoupled dynamics (O, τ0
t)

τS
t = τ0

t|OS
, τRk

t = τ0
t|ORk

,

τ0
t = etδ0, τS

t = etδS, τRk

t = e
tδRk, δ0 = δS +

∑

k=1

M

δRk
.

A1. Initial state. For any

X = (X1,� , XM)∈ Iǫ = ]− ǫ, ǫ[M ,

let ωX
(0)

be such that:

• ωX
(0)
∣

∣

∣

ORk

is unique (τRk

t , β −Xk)-KMS state.

• ωX
(0)
∣

∣

∣

OS

is unique (τS
t , β)-KMS state.
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To define heat fluxes we also need to assume

A2. Regularity of junction. V ∈Dom(δRk
) for k = 1,� , M .

The heat flux out of Rk is given by

Φk = δRk
(V ).

Denote σX
(0)t

and σX
t the dynamics generated by

δX
(0) = δ0−

∑

k=1

M
Xk

β
δRk

, δX = δX
(0) + iλ[V , · ].

ωX
(0)

is unique (σX
(0)

, β)-KMS state (modular dynamics).

By Araki perturbation theory there is a unique (σX , β)-KMS state ωX which is

normal w.r.t. ωX
(0)

and thus has the same thermodynamics.

σX=0 = τ � ωX=0 = ωeq is unique (τ , β)-KMS state.
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Proposition 1. (A1)&(A2) imply the entropy balance equation

Ent(ωX ◦σY
t |ωX)=−

∑

k=1

M

(Xk −Yk)

∫

0

t

ωX ◦σY
s (Φk)ds.

Since σX=0 = τ , setting Y = 0 and t→∞ in this formula implies

∑

k=1

M

XkωX +(Φk)> 0, (2nd law of TD).

Another important consequence of Proposition 1 is

Proposition 2. (A1)&(A2) imply that the fluxes Φk are centered:

ωX(Φk) = 0,

hold for k = 1,� , M and all X ∈ Iǫ.

Proof. By the entropy balance equation

0 6− lim
t→0

Ent(ωX ◦σY
t |ωX)

t
=
∑

k=1

M

(Xk −Yk)ωX(Φk),

holds for any X, Y ∈ Iǫ.�
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4.2. Finite time Kubo formula

Proposition 3. (A1)&(A2) imply that for any centered observable A ∈ O and
all t∈R the function

X� ωX(τ t(A)),

is differentiable at X = 0 and

∂Xk
ωX(τ t(A))

∣

∣

X=0
=

1

β

∫

0

t

ds

∫

0

β

du ωeq(τ
s(A)τ iu(Φk)).

Sketch of proof. Follow the formal calculation!
Step 1. Let

Γt = I +
∑

n>1

(iλ)n

∫

0

t

dt1

∫

0

t1

dt2 � ∫
0

tn−1

dtn τ0
tn(V )� τ0

t1(V ),

be the unitary cocycle

τ t(A) = Γtτ0
t(A)Γt

∗,

∂tΓt = iΓtτ0
t(V ),

∂tΓt
∗ = − iτ0

t(V )Γt
∗.
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Using (A2) one sees that Γt ∈ Dom(δRk
), that t � δRk

(Γt) is differentiable and
that

∂tδRk
(Γt)= δRk

(∂tΓt)= δRk
(iΓtτ0

t(V )) = iδRk
(Γt)τ0

t(V ) + iΓtτ0
t(Φk).

It follows that

∂t(δRk
(Γt)Γt

∗)= iτ t(Φk),

and hence

δRk
(Γt)Γt

∗= i

∫

0

t

τs(Φk)ds.

Computing

δRk
(τ t(A))= δRk

(Γtτ0
t(A)Γt

∗),

one immediately get

δRk
(τ t(A))− τ t(δRk

(A)) =

∫

0

t

i[τs(Φk), τ t(A)]ds. (2)

Set

PX(t)=−
∑

k=1

M
Xk

β

∫

0

t

τ−s(Φk)ds,

and denote by αX,t
u the dynamics generated by

δX,t = δX + i[PX(t), · ].
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Using (2) one checks that

∂u(σX
u ◦ τ t(A))= σX

u ◦ τ t(δX,t(A)),

which shows that τ−t ◦ σX
u ◦ τ t = αX,t

u , and hence that ωX ◦ τ t is (αX,t, β)-KMS
state.

Step 2. A simple application of Araki perturbation theory of KMS states yields

ωX(τ t(A)) = ωX(A)

(

1−
∑

k

Xk

∫

0

t

ωX(τ−s(Φk))ds

)

+
∑

k

Xk

β

∫

0

t

ds

∫

0

β

du ωX(AσX
iu(τ−s(Φk)))

+ O(|tX |2).

Step 3. If A is centered it follows that

ωX(τ t(A))−ωX=0(τ t(A)) =
∑

k

Xk

β

∫

0

t

ds

∫

0

β

duωX(AσX
iu(τ−s(Φk)))+ O(|tX |2).
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Step 4. Using the (σX , β)-KMS condition and approximation by σX-analytic
elements one shows that

lim
X→0

ωX(AσX
iu(B))= ωeq(Aτ iu(B)),

holds for all A, B ∈O and 0 6 u 6 β.�
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4.3. The limit t→ ∞.

A3. NESS. For any X ∈ Iǫ there exists a state ωX + such that

lim
t→∞

ωX(τ t(A))= ωX +(A),

for all A∈O.

On physical grounds one expects that thermodynamically equivalent initial
states lead to the same NESS i.e.,

lim
t→∞

η(τ t(A)) = ωX+(A),

for any ωX-normal state η and in particular for the product state η = ωX
(0)

.

We shall hide the main difficulty of a general proof of Kubo formula into

Definition 4. A centered observable A∈O is regular if X� ωX+(A) is differen-
tiable at X = 0 and

∂XωX+(A)|X=0 = lim
t→∞

∂X ωX ◦ τ t(A)
∣

∣

X=0
.
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Proving regularity of an observable is a difficult dynamical problem which can
only be solved within specific models. In practice, it can be checked with the
help of

Lemma 5. Suppose (A1)&(A3) hold and the centered observable A is such that
the function X � ωX(A) has analytic extension to Dǫ = {X ∈CM |maxk |Xk|< ǫ}
such that

sup
t>0,X∈Dǫ

|ωX(τ t(A))|<∞,

then A is regular.

Keeping the exchange of limits problem out of our way we obtain

Theorem 6. (A1)&(A2)&(A3) imply that, for any regular observable A, Kubo
formula

∂Xk
ωX +(A)|X=0 =

1

β

∫

0

∞

ds

∫

0

β

du ωeq(τ s(A)τ iu(Φk)),

holds.
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4.4. Time reversal invariance

System is TRI if there exists involutive, ∗ -anti-morphism θ on O s.t.

θ(OS) =OS , θ(ORk
) =ORk

, θ ◦ τ0
t = τ0

−t◦ θ, θ(Vk)= Vk.

A4. Mixing equilibrium state. For all A, B ∈O

lim
|t|→∞

ωeq(Aτ t(B))= ωeq(A)ωeq(B).

Theorem 7. For TRI systems (A1)&(A2)&(A3)&(A4) imply that, for any reg-
ular observable A, Kubo formula

∂Xk
ωX +(A)|

X=0 =
1

2

∫

−∞

∞

ωeq(τ
s(A)Φk)ds, (3)

holds.

Corollary 8. If the fluxes Φk are regular then Onsager reciprocity holds

∂Xk
ωX +(Φj)|X=0 = ∂Xj

ωX +(Φk)
∣

∣

X=0
.
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Proof. Onsager symmetry follows from Kubo formula (3) and the fact that (A4)
implies the stability condition

∫

−∞

∞

ωeq([A, τs(B)])ds= 0,

for all A, B ∈O.�

Proof of Theorem 7. TRI and (A1) give ωeq(θ(A)) = ωeq(A∗) for A∈O.

KMS condition further give

ωeq(τ
s(A)τ iu(B))= ωeq(τ

−s(A)τ i(β−u)(B)),

for 0 6 u 6 β and thus

1

β

∫

0

β
(
∫

0

t

ωeq(τ
s(A)τ iu(B))ds

)

du =
1

2β

∫

0

β
(
∫

−t

t

ωeq(Aτ s+iu(B))ds

)

du.

Since the integral of z � ωeq(Aτz(B)) over the boundary of [ − t, t] + i[0, u] is
zero we get

1

β

∫

0

β
(
∫

0

t

ωeq(τ
s(A)τ iu(B))ds

)

du =
1

2

∫

−t

t

ωeq(Aτ s(B))ds+
1

2β

∫

0

β

R(t, u)du,
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where

R(t, u)= i

∫

0

u
(

ωeq(Aτ t+iv(B))−ωeq(Aτ−t+iv(B))
)

dv.

Assumption (A4) and dominated convergence yield the result.�

28



5. Examples

5.1. Spin-Fermion models

Small system S. 2-level system

• Hilbert space HS =C2.

• Hamiltonian HS = σz.

• Algebra OS =B(HS).

• ωSX
(0) ( · ) = ZS

−1tr (e−βHS( · )).

Reservoirs Rk. Free Fermi gases at thermal equilibrium.

• One particle Hilbert space hk = L2(R+, dε)⊗Kk.

• One particle Hamiltonian hk is multiplication by ε.

• Algebra ORk
=CAR(hk).

• Dynamics τRk

t is Bogoliubov automorphism associated to hk.

• ωRk X
(0)

is gauge-invariant quasi-free state with 2-point function

ωRk X
(0) (a∗(f)a(g)) = (g, (1 + e(β−Xk)hk)−1f).
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Uncoupled joint system.

• Algebra O=OS ⊗OR1⊗� ⊗ORM
.

• Dynamics τ0
t = τS

t ⊗ τR1

t ⊗� ⊗ τRM

t .

• Initial state ωX
(0) = ωSX

(0) ⊗ωR1 X
(0) ⊗� ⊗ωRM X

(0)
.

Coupling. Trough field operators ϕk(f) = 2−1/2(ak
∗(f)+ ak(f)):

Vk = λσx ⊗ ϕk(αk),

with αk ∈ hk. Coupled dynamical system (O, τλ
t).

There exists conjugation ck on hk such that ckαk = αk � The system is TRI.
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To fk ∈ hk we associate fk̃ ∈L2(R, dε)⊗Kk given by

fk̃(ε) =

{

fk(ε) if ε > 0,

(ckfk)(|ε|) if ε < 0.

Denote by H2(δ; Kk) the Hardy space of analytic function

f : {z ∈C||Im z |< δ}→Kk.

We shall assume:

S1. Analyticity. For some δ > 0 and κ > β and all k

e−κzα̃
k
(z)∈H2(δ; Kk).

S2. Effective coupling. ‖αk(2)‖Kk
> 0 for all k.

Denote by Õ the ∗ -subalgebra generated by elements of the form

Q⊗ ak(fk),

where Q∈OS and fk ∈ hk is such that, for some b > (κ + β)/2,

e−bεf̃k(ε)∈H2(δ; Kk).
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Using C-Liouvillean techniques one can prove the following

Theorem 9. Under Assumptions (S1)&(S2) there exists Λ > 0 such that, for
0 < |λ|< Λ, Assumptions (A1)-(A4) are satisfied and

lim
t→∞

η(τλ
t(A)) = ωX+(A),

holds for any ωX
(0)

-normal state η. Moreover, any centered observable A ∈ Õ is

regular and Φk ∈ Õ.

Similar result hold for more general N -level systems coupled to
Fermionic reservoirs.
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5.2. Locally interacting Fermi gases

R1 R3

R2

Interation region
Free Fermi gas with

• One particle Hilbert space h = hR1
⊕� ⊕ hRM

.

• One particle Hamiltonian h = hR1⊕� ⊕hRM
.

• Algebra O=CAR(h).

• Bogoliubov decoupled dynamics τ0
t generated by h.
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• Initial state ωX
(0)

: quasi-free gauge-invariant with 2-points function

ωX
(0)(a∗(f)a(g))= (g, TX

(0)
f),

TX
(0) =

⊕

k=1

M

(1 + e
(β−Xk)hRk)−1.

• Local interaction

V = V ∗= λ
∑

k=1

K
∏

j=1

nk

a∗(uk,j)a(vk,j)∈CAR+(h),

with uk,j , vk,j ∈ h � perturbed coupled dynamics τλ
t.
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We shall assume:

L1. The channel Hamiltonians hk have purely a.c. spectra.

L2. There exists a dense subspace D⊂ h such that

• uk,j , vk,j , hluk,j , hlvk,j ∈D for all k, j , l.

• For any f , g ∈D
∫

−∞

∞

|(f , eithg)|dt <∞.

Theorem 10. If (L1)&(L2) hold there exists Λ > 0 such that, for 0 < |λ|< Λ the
Møller morphism

γ+ = s− lim
t→∞

τ0
−t ◦ τλ

t ,

exists and is a ∗ -automorphism of O. For any ωX
(0)

-normal state η one has

lim
t→∞

η ◦ τλ
t(A)= ωX +(A) = ωX

(0) ◦ γ+(A).

Moreover, any centered observable of the type

A =
∑

k

a#(fk,1)� a#(fk,nk
),

with fk,j ∈D is regular. In particular, the heat fluxes Φk are regular.
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