Série 8 – Les groupes SO(2) et U(1)

On dénote par SO(2) le groupe des matrices orthogonales 2×2 de déterminant 1, et par U(1) celui des "matrices" unitaires 1×1 (i.e., des nombres complexes de module 1).

Exercice 1

1. Soit $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Calculer, par récurrence, A^k pour k > 1. En déduire une expression explicite pour

$$e^{A\varphi} = \sum_{k>0} \frac{\varphi^k}{k!} A^k$$

2. Montrer que l'application

$$\psi: \mathbb{R} \to SO(2)$$

$$\varphi \mapsto e^{A\varphi}$$

est un morphisme surjectif de $(\mathbb{R}, +)$ vers $(SO(2), \cdot)$. Quel est son noyau? En conclure que $SO(2) \simeq U(1)$.

Exercice 2

1. Montrer que toutes les représentations de dimension 1 de SO(2) dans les \mathbb{C} -espaces vectoriels sont de la forme

$$\pi_k(e^{A\varphi}) = e^{i k\varphi}, \qquad k \in \mathbb{Z}.$$

2. Soit \mathcal{P}_0 l'espace vectoriel des fonctions 2π -périodiques $f: \mathbb{R} \to \mathbb{C}$. On définit l'application

$$T_{\varphi}: \mathcal{P}_0 \rightarrow \mathcal{P}_0$$

 $f(x) \mapsto f(x+\varphi)$

Montrer que $\pi(e^{A\varphi}) = T_{\varphi}$ définit une représentation de SO(2) dans \mathcal{P}_0 .

3. Montrer que

$$P_k = \frac{1}{2\pi} \int_0^{2\pi} \overline{\pi_k(e^{A\varphi})} \pi(e^{A\varphi}) \, d\varphi$$

est un projecteur et calculer son image.

4. A l'aide du théorème de Dirichlet sur les séries de Fourier, montrer que

$$\sum_{k\in\mathbb{Z}} P_k = \mathrm{id}$$

et en déduire que

$$\pi = \bigoplus_{k \in \mathbb{Z}} \pi_k.$$

5. Soit $\mathcal{P}_2 = \mathcal{P}_0 \cap \mathcal{C}^2(\mathbb{R}, \mathbb{C})$. On définit

$$L: \quad \mathcal{P}_2 \quad \to \quad \mathcal{P}_0$$
$$f(x) \quad \mapsto \quad f''(x)$$

Montrer que L commute avec chaque P_k et en déduire ses valeurs propres et fonctions propres.

Série 9 – Rotations, générateurs et le groupe SO(3)

Exercice 1

Soient A et B des matrices $n \times n$ quelconques.

1. Montrer que

$$\frac{\mathrm{d}}{\mathrm{d}t} \,\mathrm{e}^{At} = A \,\mathrm{e}^{At} \,.$$

2. Montrer que $\det(I + \varepsilon B) = 1 + \varepsilon \operatorname{Tr} B + \mathcal{O}(\varepsilon^2)$, et en déduire que

$$\frac{\mathrm{d}}{\mathrm{d}t}\det(\mathrm{e}^{At}) = \mathrm{Tr}\,A\det(\mathrm{e}^{At}).$$

Déterminer alors $\det(e^{At})$.

3. Soit $B(t) = e^{At} B e^{-At}$. Montrer, en calculant ses dérivées, que

$$B(t) = \sum_{k \geqslant 0} \frac{t^k}{k!} B_k,$$

où $B_0 = B$, $B_1 = [A, B] = AB - BA$ et $B_{k+1} = [A, B_k]$ pour $k \ge 1$ (formule des commutateurs emboîtés ou de Baker-Campbell-Hausdorff).

Exercice 2

1. Soit n un vecteur unité de \mathbb{R}^3 . Soit $R_{n,\alpha}$ la rotation d'angle α autour de n. Exprimer $R_{n,\alpha}(x)$ en fonction de $n \cdot x$ et $n \wedge x$.

Indication: Travailler dans une base orthogonale contenant n et $n \wedge x$.

2. Déterminer la matrice A(n) telle que

$$\frac{\mathrm{d}}{\mathrm{d}\alpha}R_{n,\alpha}(x)\Big|_{\alpha=0} = A(n)x.$$

Exprimer $R_{n,\alpha}$ à l'aide de nn^T et A(n), et vérifier que $R_{n,\alpha} \in SO(3)$.

3. Montrer que

$$\frac{\mathrm{d}}{\mathrm{d}\alpha}R_{n,\alpha} = A(n)R_{n,\alpha}$$

et en déduire $e^{A(n)\alpha}$.

Rappel: Pour $x, y, z \in \mathbb{R}^3$, $x \wedge (y \wedge z) = (x \cdot z)y - (x \cdot y)z$.

- 4. Soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 . On dénote $A(e_i)$ par A_i . Calculer le commutateur $[A_i, A_j] = A_i A_j A_j A_i$ pour tout couple (i, j). En déduire [A(n), A(m)] pour deux vecteurs quelconques $n, m \in \mathbb{R}^3$.
- 5. Soit m un vecteur unité de \mathbb{R}^3 et B=A(m). Montrer que

$$e^{A(n)\alpha} e^{B\beta} e^{-A(n)\alpha} = e^{C(n,\alpha,m)\beta}$$

pour une matrice $C(n,\alpha,m)$ qu'on déterminera. Interpéter ce résultat géométriquement.

Série 10 – Matrices de Pauli et le groupe SU(2)

Exercice 1

Les matrices de Pauli sont définies par

$$\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -\mathrm{i} \\ \mathrm{i} & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

- 1. Caluculer $\sigma_i \sigma_j$, $[\sigma_i, \sigma_j]$ et $\text{Tr}(\sigma_i \sigma_j)$ pour tout i, j.
- 2. Soit $x_0 \in \mathbb{R}$ et $x = (x_1, x_2, x_3) \in \mathbb{R}^3$. Montrer que

$$H(x_0, x) = x_0 \sigma_0 + x \cdot \sigma = \sum_{x=0}^{3} x_i \sigma_i$$

est une matrice hermitienne. Montrer que toute matrice hermitienne 2×2 peut s'écrire sous cette forme, et exprimer les x_i à l'aide de $Tr(H\sigma_i)$.

3. Calculer le commutateur $[H(x_0, x), H(y_0, y)]$.

Exercice 2

1. Montrer que toute matrice $U \in SU(2)$ s'écrit

$$U = \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix}$$
 avec $|\alpha|^2 + |\beta|^2 = 1$.

- 2. Soit $H = H(x_0, x)$ une matrice hermitienne. Montrer que e^{iH} est unitaire. Sous quelle condition a-t-on $e^{iH} \in SU(2)$?
- 3. On pose $H=x\cdot\sigma$, avec $x=r(\sin\theta\cos\varphi,\sin\theta\sin\varphi,\cos\theta)$ en coordonnées sphériques. Montrer que

$$S = \frac{1}{\Delta^{1/2}} \begin{pmatrix} 1 + \cos \theta & -\sin \theta e^{-i\varphi} \\ \sin \theta e^{i\varphi} & 1 + \cos \theta \end{pmatrix} \quad \text{avec } \Delta = 2(1 + \cos \theta)$$

est une matrice hermitienne telle que S^*HS soit diagonale. Calculer e^{iH} .

4. Soit $H = r\hat{x} \cdot \sigma$ avec r > 0 et $\|\hat{x}\| = 1$. Soit $G = y \cdot \sigma$. Montrer que

$$e^{iH} e^{iG} e^{-iH} = e^{iG'}$$

où $G' = y' \cdot \sigma$. Déterminer y' = y'(x, y) à l'aide de la formule des commutateurs emboîtés. Quelles sont les classes de conjugaison de SU(2)?

5. A tout $U \in SU(2)$, on associe l'application

Montrer que ϕ est une représentation de SU(2) dans \mathbb{R}^3 . Déterminer son image et son noyau. Interpréter le résultat.

Série 11 – Transformations de Lorenz et $SL(2, \mathbb{C})$

Rappelons les matrices de Pauli:

$$\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -\mathrm{i} \\ \mathrm{i} & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Pour tout $n \in \mathbb{R}^3$, on notera $n \cdot \sigma = \sum_{i=1}^3 n_i \sigma_i$. Pour $x \in \mathbb{R}^4$, $x \cdot \sigma$ désigne $\sum_{i=1}^4 x_i \sigma_i$, où $\sigma_4 = \sigma_0 = I$.

On rappelle que SO(3,1) est le groupe des applications linéaires $T \in SL(4,\mathbb{R})$ préservant la forme quadratique $x_1^2 + x_2^2 + x_3^2 - x_4^2$. T est appelé une transformation de Lorenz propre.

- 1. A un vecteur $x \in \mathbb{R}^4$, on associe la matrice hermitienne $X = x \cdot \sigma \in GL(2, \mathbb{C})$. Calculer det X et $Tr(X^2)$.
- 2. Soit $A \in \mathrm{SL}(2,\mathbb{C})$. On lui associe l'application

Montrer que $\Lambda(A) \in SO(3, 1)$.

- 3. Monter que Λ est un morphisme de $\mathrm{SL}(2,\mathbb{C})$ vers $\mathrm{SO}(3,1)$ et calculer son noyau. Indication: Montrer que $\mathrm{Tr}(A\sigma_jA^*\sigma_i)=2\delta_{ij}$, et considérer le cas i=j=4.
- 4. Soit $U \in SL(2,\mathbb{C})$ une matrice unitaire. Nous avons vu qu'il existe $\alpha \in \mathbb{R}$ et $n \in \mathbb{R}^3$ de norme 1 tels que

$$U = \cos \frac{\alpha}{2} I + i \sin \frac{\alpha}{2} n \cdot \sigma =: U(\alpha n).$$

Montrer que $\Lambda(U)$ est une rotation (utiliser la série précédente).

5. Soit $H \in SL(2,\mathbb{C})$ une matrice hermitienne. Montrer qu'il existe $\eta \in \mathbb{R}$ et $n \in \mathbb{R}^3$ de norme 1 tels que

$$H = \operatorname{ch} \frac{\eta}{2} I + \operatorname{sh} \frac{\eta}{2} n \cdot \sigma =: H(\eta n).$$

Calculer $\Lambda(H)$ (on dit que c'est une transformation de Lorenz pure, de direction n et de rapidité η).

6. Soit $B = b_0 I + b \cdot \sigma$ une matrice hermitienne. Montrer que

$$\sqrt{B} = \frac{1}{\sqrt{2(b_0 + \sqrt{b_0^2 - ||b||^2})}} \left[\sqrt{b_0^2 - ||b||^2} I + B \right].$$

En déduire que tout $A \in \mathrm{SL}(2,\mathbb{C})$ s'écrit comme A = HU, avec H hermitienne et U unitaire

Indication: $H^2 = AA^*$.

7. Soient $\Lambda_1 = \Lambda(H(\eta_1 n_1))$ et $\Lambda_2 = \Lambda(H(\eta_2 n_2))$ deux transformations de Lorenz pures. Montrer que $\Lambda_1 \Lambda_2 = \Lambda R$, où Λ est pure et R est une rotation. Quels sont leurs paramètres? Le calcul de Λ donne la loi de composition des vitesses, celui de R la précession de Thomas.

Série 12 – Algèbres de Lie

Soit G un groupe de Lie et $\mathfrak g$ son algèbre de Lie.

- Si $A \in \mathfrak{g}$, on dénote par $\mathrm{ad}_A : \mathfrak{g} \to \mathfrak{g}$ l'application $\mathrm{ad}_A(X) = [A, X]$.
- Si $g \in G$, on dénote par $\mathrm{Ad}_q : \mathfrak{g} \to \mathfrak{g}$ l'application $\mathrm{Ad}_q(X) = gXg^{-1}$.

On a donc $Ad_{e^A} = e^{ad_A}$.

Exercice 1

Soit \mathfrak{g} une algèbre de Lie (abstraite) de dimension 2. Notons $\{X,Y\}$ une base de \mathfrak{g} .

- 1. Exprimer [aX + bY, cX + dY] en fonction de [X, Y].
- 2. Considérons le cas [X, Y] = 0. Soient les matrices

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

On définit des matrices 4×4 par

$$\psi_1(X) = \psi_2(X) = \begin{pmatrix} T & 0 \\ 0 & 0 \end{pmatrix} \qquad \psi_3(X) = \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix},$$

$$\psi_1(Y) = \begin{pmatrix} 0 & 0 \\ 0 & T \end{pmatrix}$$
 $\psi_2(Y) = \psi_3(Y) = \begin{pmatrix} 0 & 0 \\ 0 & A \end{pmatrix}.$

Montrer que ψ_1 , ψ_2 et ψ_3 sont des représentations de l'algèbre de Lie \mathfrak{g} . Calculer $e^{\psi_i(aX+bY)}$ pour chaque i. Quel est son noyau $\{(a,b)\in\mathbb{R}^2: e^{\psi_i(aX+bY)}=I\}$? En déduire la topologie du groupe de Lie associé à la représentation ψ_i .

- 3. Passons au cas $[X,Y] \neq 0$. Montrer qu'il existe une base $\{A,B\}$ de \mathfrak{g} telle que [A,B]=B. Calculer le crochet de deux éléments quelconques de \mathfrak{g} .
- 4. Montrer que

$$\psi(A) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad \psi(B) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

est une représentation de \mathfrak{g} . Calculer $e^{\psi(\alpha A + \beta B)}$. Montrer que le groupe de Lie ainsi construit est isomorphe au groupe des applications affines $x \mapsto ax + b$.

5. Soit $Y = \alpha A + \beta B$ et $g = e^Y$. Calculer $Ad_q(X)$ pour tout $X \in \mathfrak{g}$.

Exercice 2

Soit \mathfrak{h} une algèbre de Lie de dimension 3. On suppose qu'elle admet une base $\{P,Q,Z\}$ telle que

$$[P, Q] = iZ,$$
 $[P, Z] = [Q, Z] = 0.$

- Calculer le commutateur de deux éléments quelconques de h.
- Montrer que

$$\psi(P): f(x) \mapsto if'(x), \qquad \psi(Q): f(x) \mapsto xf(x), \qquad \psi(Z): f(x) \mapsto f(x)$$

est une représentation de \mathfrak{h} dans $\mathcal{C}^1(\mathbb{R},\mathbb{C})$.

• Calculer $Ad_{eY}(X)$ pour deux éléments quelconques X, Y de \mathfrak{h} .