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1 Introduction

In these lectures we shall study an ”atom”,S, described by finitely many energy lev-
els, coupled to a ”radiation field”,R, described by another set (typically continuum)
of energy levels. More precisely, assume thatS andR are described, respectively,
by the Hilbert spaceshS , hR and the HamiltonianshS , hR. Let h = hS ⊕ hR and
h0 = hS ⊕ hR. If v is a self-adjoint operator onh describing the coupling between
S andR, then the Hamiltonian we shall study ishλ ≡ h0 + λv, whereλ ∈ R is a
coupling constant.

For reasons of space we shall restrict ourselves here to the case whereS is a
single energy level,i.e., we shall assume thathS ≡ C and thathS ≡ ω is the operator
of multiplication by a real numberω. The multilevel case will be considered in the
continuation of these lecture notes [JP3]. We will keephR andhR general and we
will assume that the interaction has the formv = w + w∗, wherew : C → hR is a
linear map.

With a slight abuse of notation, in the sequel we will drop⊕ whenever the mean-
ing is clear within the context. Hence, we will writeα for α ⊕ 0, g for 0 ⊕ g, etc.If
w(1) = f , thenw = (1| · )f andv = (1| · )f + (f | · )1.

In physics literature, a Hamiltonian of the form

hλ = h0 + λ((1| · )f + (f | · )1), (1)

with λ ∈ R is sometimes calledWigner-Weisskopf atom(abbreviated WWA) and
we will adopt that name. Operators of the type (1) are also often calledFriedrichs
Hamiltonians[Fr]. The WWA is a toy model invented to illuminate various aspects
of quantum physics; see [AJPP1, AM, Ar, BR2, CDG, Da1, Da4, DK, Fr, FGP, He,
Maa, Mes, PSS].

Our study of the WWA naturally splits into several parts. Non-perturbative and
perturbative spectral analysis are discussed respectively in Sections 2 and 3. The
fermionic second quantization of WWA is discussed in Sections 4 and 5.

In Section 2 we place no restrictions onhR and we obtain qualitative information
on the spectrum ofhλ which is valid either for all or for Lebesgue a.e.λ ∈ R.
Our analysis is based on the spectral theory of rank one perturbations [Ja, Si1]. The
theory discussed in this section naturally applies to the cases whereR describes a
quasi-periodic or a random structure, or the coupling constantλ is large.

Quantitative information about the WWA can be obtained only in the perturbative
regime and under suitable regularity assumptions. In Section 3.2 we assume that the
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spectrum ofhR is purely absolutely continuous, and we study spectral properties of
hλ for small, non-zeroλ. The main subject of Section 3.2 is the perturbation theory
of embedded eigenvalues and related topics (complex resonances, radiative life-time,
spectral deformations, weak coupling limit). Although thematerial covered in this
section is very well known, our exposition is not traditional and we hope that the
reader will learn something new. The reader may benefit by reading this section in
parallel with ComplementCIII in [CDG].

The second quantizations of the WWA lead to the simplest non-trivial examples
of open systems in quantum statistical mechanics. We shall call the fermionic sec-
ond quantization of the WWA theSimple Electronic Black Box(SEBB) model. The
SEBB model in the perturbative regime has been studied in therecent lecture notes
[AJPP1]. In Sections 4 and 5 we extend the analysis and results of [AJPP1] to the
non-perturbative regime. For additional information about the Electronic Black Box
models we refer the reader to [AJPP2].

Assume thathR is a real Hilbert space and consider the WWA (1) over the
real Hilbert spaceR ⊕ hR. The bosonic second quantization of the wave equation
∂2
t ψt+hλψt = 0 (see Section 6.3 in [BSZ] and the lectures [DeB, Der1] in thisvol-

ume) leads to the so calledFC (fully coupled) quantum oscillator model. This model
has been extensively discussed in the literature. The well-known references in the
mathematics literature are [Ar, Da1, FKM]. For references in the physics literature
the reader may consult [Br, LW]. One may use the results of these lecture notes to
completely describe spectral theory, scattering theory, and statistical mechanics of
the FC quantum oscillator model. For reasons of space we shall not discuss this topic
here (see [JP3]).

These lecture notes are on a somewhat higher technical levelthan the recent lec-
ture notes of the first and the third author [AJPP1, Ja, Pi]. The first two sections can
be read as a continuation (i.e. the final section) of the lecture notes [Ja]. In these
two sections we have assumed that the reader is familiar withelementary aspects of
spectral theory and harmonic analysis discussed in [Ja]. Alternatively, all the prereq-
uisites can be found in [Ka, Koo, RS1, RS2, RS3, RS4, Ru]. In Section 2 we have
assumed that the reader is familiar with basic results of therank one perturbation
theory [Ja, Si1]. In Sections 4 and 5 we have assumed that the reader is familiar with
basic notions of quantum statistical mechanics [BR1, BR2, BSZ, Ha]. The reader
with no previous exposure to open quantum systems would benefit by reading the
last two sections in parallel with [AJPP1].

The notation used in these notes is standard except that we denote the spectrum of
a self-adjoint operatorA by sp(A). The set of eigenvalues, the absolutely continuous,
the pure point and the singular continuous spectrum ofA are denoted respectively by
spp(A), spac(A), sppp(A), andspsc(A). The singular spectrum ofA is spsing(A) =
sppp(A) ∪ spsc(A). The spectral subspaces associated to the absolutely continuous,
the pure point, and the singular continuous spectrum ofA are denoted byhac(A),
hpp(A), andhsc(A). The projections on these spectral subspaces are denoted by
1ac(A), 1pp(A), and1sc(A).

Acknowledgment.These notes are based on the lectures the first author gave in the
Summer School ”Large Coulomb Systems—QED”, held in Nordfjordeid, August
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11—18 2003. V.J. is grateful to Jan Dereziński and Heinz Siedentop for the invita-
tion to speak and for their hospitality. The research of V.J.was partly supported by
NSERC. The research of E.K. was supported by an FCAR scholarship. We are grate-
ful to S. De Bìevre and J. Dereziński for enlightening remarks on an earlier version
of these lecture notes.

2 Non-perturbative theory

Letν be a positive Borel measure onR. We denote byνac, νpp, andνsc the absolutely
continuous, the pure point and the singular continuous partof ν w.r.t. the Lebesgue
measure. The singular part ofν is νsing = νpp + νsc. We adopt the definition of a
complex Borel measure given in [Ja, Ru]. In particular, any complex Borel measure
onR is finite.

Let ν be a complex Borel measure or a positive measure such that
∫

R

dν(t)

1 + |t| <∞.

The Borel transform ofν is the analytic function

Fν(z) ≡
∫

R

dν(t)

t− z
, z ∈ C \ R.

Let ν be a complex Borel measure or a positive measure such that
∫

R

dν(t)

1 + t2
<∞. (2)

The Poisson transform ofν is the harmonic function

Pν(x, y) ≡ y

∫

R

dν(t)

(x− t)2 + y2
, x+ iy ∈ C+,

whereC± ≡ {z ∈ C | ± Im z > 0}.
The Borel transform of a positive Borel measure is a Herglotzfunction, i.e., an

analytic function onC+ with positive imaginary part. In this case

Pν(x, y) = ImFν(x+ iy),

is a positive harmonic function. TheG-function ofν is defined by

Gν(x) ≡
∫

R

dν(t)

(x− t)2
= lim

y↓0

Pν(x, y)

y
, x ∈ R.

We remark thatGν is an everywhere defined function onR with values in[0,∞].
Note also that ifGν(x) <∞, thenlimy↓0 ImFν(x+ iy) = 0.

If h(z) is analytic in the half-planeC±, we set
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h(x± i0) ≡ lim
y↓0

h(x± iy),

whenever the limit exist. In these lecture notes we will use anumber of standard
results concerning the boundary valuesFν(x ± i0). The proofs of these results can
be found in [Ja] or in any book on harmonic analysis. We note inparticular that
Fν(x ± i0) exist and is finite for Lebesgue a.e.x ∈ R. If ν is real-valued and non-
vanishing, then for anya ∈ C the sets{x ∈ R |Fν(x± i0) = a} have zero Lebesgue
measure.

Let ν be a positive Borel measure. For later reference, we describe some elemen-
tary properties of its Borel transform. First, the Cauchy-Schwartz inequality yields
that fory > 0

ν(R) ImFν(x+ iy) ≥ y |Fν(x+ iy)|2. (3)

The dominated convergence theorem yields

lim
y→∞

y ImFν(iy) = lim
y→∞

y |Fν(iy)| = ν(R). (4)

Assume in addition thatν(R) = 1. The monotone convergence theorem yields

lim
y→∞

y2
(
y ImFν(iy) − y2 |Fν(iy)|2

)

= lim
y→∞

y4

2

∫

R×R

(
1

t2 + y2
+

1

s2 + y2
− 2

(t− iy)(s+ iy)

)

dν(t) dν(s)

= lim
y→∞

1

2

∫

R×R

y2

t2 + y2

y2

s2 + y2
(t− s)2dν(t) dν(s)

=
1

2

∫

R×R

(t− s)2dν(t) dν(s).

If ν has finite second moment,
∫

R
t2dν(t) <∞, then

1

2

∫

R×R

(t− s)2dν(t) dν(s) =

∫

R

t2dν(t) −
(∫

R

tdν(t)

)2

. (5)

If
∫

R
t2dν(t) = ∞, then it is easy to see that the both sides in (5) are also infinite.

Combining this with Equ. (4) we obtain

lim
y→∞

y ImFν(iy) − y2 |Fν(iy)|2
|Fν(iy)|2

=

∫

R

t2dν(t) −
(∫

R

tdν(t)

)2

, (6)

where the right hand side is defined to be∞ whenever
∫

R
t2dν(t) = ∞.

In the sequel|B| denotes the Lebesgue measure of a Borel setB and δy the
delta-measure aty ∈ R.
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2.1 Basic facts

Let hR,f ⊂ hR be the cyclic space generated byhR andf . We recall thathR,f is
the closure of the linear span of the set of vectors{(hR − z)−1f | z ∈ C \R}. Since
(C ⊕ hR,f )

⊥ is invariant underhλ for all λ and

hλ|(C⊕hR,f )⊥ = hR|(C⊕hR,f )⊥ ,

in this section without loss of generality we may assume thathR,f = hR, namely
thatf is a cyclic vector forhR. We denote byµR the spectral measure forhR and
f . By the spectral theorem, w.l.o.g. we may assume that

hR = L2(R,dµR),

thathR ≡ x is the operator of multiplication by the variablex, and thatf(x) = 1
for all x ∈ R. We will write FR for FµR

, etc.
As we shall see, in the non-perturbative theory of the WWA it isvery natural to

consider the Hamiltonian (1) as an operator-valued function of two real parameters
λ andω. Hence, in this section we will write

hλ,ω ≡ h0 + λv = ω ⊕ x+ λ ((f | · )1 + (1| · )f) .

We start with some basic formulas. The relation

A−1 −B−1 = A−1(B −A)B−1,

yields that

(hλ,ω − z)−11 = (ω − z)−11 − λ(ω − z)−1(hλ,ω − z)−1f,

(hλ,ω − z)−1f = (hR − z)−1f − λ(f |(hR − z)−1f)(hλ,ω − z)−11.
(7)

It follows that the cyclic subspace generated byhλ,ω and the vectors1, f , is inde-
pendent ofλ and equal toh, and that forλ 6= 0, 1 is a cyclic vector forhλ,ω. We
denote byµλ,ω the spectral measure forhλ,ω and1. The measureµλ,ω contains full
spectral information abouthλ,ω for λ 6= 0. We also denote byFλ,ω andGλ,ω the
Borel transform and theG-function ofµλ,ω. The formulas (7) yield

Fλ,ω(z) =
1

ω − z − λ2FR(z)
. (8)

SinceFλ,ω = F−λ,ω, the operatorshλ,ω andh−λ,ω are unitarily equivalent.
According to the decompositionh = hS ⊕ hR we can write the resolvent

rλ,ω(z) ≡ (hλ,ω − z)−1 in matrix form

rλ,ω(z) =





rSS
λ,ω(z) rSR

λ,ω(z)

rRS
λ,ω(z) rRR

λ,ω (z)



 .
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A simple calculation leads to the following formulas for itsmatrix elements

rSS
λ,ω(z) = Fλ,ω(z),

rSR
λ,ω(z) = −λFλ,ω(z)1(f |(hR − z)−1 · ),
rRS
λ,ω(z) = −λFλ,ω(z)(hR − z)−1f(1| · ),
rRR
λ,ω (z) = (hR − z)−1 + λ2Fλ,ω(z)(hR − z)−1f(f |(hR − z)−1 · ).

(9)

Note that forλ 6= 0,

Fλ,ω(z) =
Fλ,0(z)

1 + ωFλ,0(z)
.

This formula should not come as a surprise. For fixedλ 6= 0,

hλ,ω = hλ,0 + ω(1| · )1,

and since1 is a cyclic vector forhλ,ω, we are in the usual framework of the rank
one perturbation theory withω as the perturbation parameter! This observation will
allow us to naturally embed the spectral theory ofhλ,ω into the spectral theory of
rank one perturbations.

By taking the imaginary part of Relation (8) we can relate theG-functions ofµR

andµλ,ω as

Gλ,ω(x) =
1 + λ2GR(x)

|ω − x− λ2FR(x+ i0)|2 , (10)

whenever the boundary valueFR(x+ i0) exists and the numerator and denominator
of the right hand side are not both infinite.

It is important to note that, subject to a natural restriction, every rank one spectral
problem can be put into the formhλ,ω for a fixedλ 6= 0.

Proposition 1. Let ν be a Borel probability measure onR and λ 6= 0. Then the
following statements are equivalent:

1. There exists a Borel probability measureµR on R such that the corresponding
µλ,0 is equal toν.

2.
∫

R
tdν(t) = 0 and

∫

R
t2dν(t) = λ2.

Proof. (1)⇒ (2) Assume thatµR exists. Thenhλ,01 = λf and hence
∫

R

tdν(t) = (1, hλ,01) = 0,

and ∫

R

t2dν(t) = ‖hλ,01‖2 = λ2.

(2)⇒ (1) We need to find a probability measureµR such that

FR(z) = λ−2

(

−z − 1

Fν(z)

)

, (11)
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for all z ∈ C+. Set

Hν(z) ≡ −z − 1

Fν(z)
.

Equ. (3) yields thatC+ ∋ z 7→ λ−2 ImHν(z) is a non-negative harmonic function.
Hence, by well-known results in harmonic analysis (see e.g.[Ja, Koo]), there exists
a Borel measureµR which satisfies (2) and a constantC ≥ 0 such that

λ−2 ImHν(x+ iy) = PR(x, y) + Cy, (12)

for all x+ iy ∈ C+. The dominated convergence theorem and (2) yield that

lim
y→∞

PR(0, y)

y
= lim
y→∞

∫

R

dµR(t)

t2 + y2
= 0.

Note that

y ImHν(iy) =
y ImFν(iy) − y2 |Fν(iy)|2

|Fν(iy)|2
, (13)

and so Equ. (6) yields

lim
y→∞

ImHν(iy)

y
= 0.

Hence, (12) yields thatC = 0 and that

FR(z) = λ−2Hν(z) + C1, (14)

whereC1 is a real constant. From Equ. (4), (13) and (6) we get

µR(R) = lim
y→∞

y ImFR(iy)

= λ−2 lim
y→∞

y ImHν(iy)

= λ−2

(
∫

R

t2dν(t) −
(∫

R

tdν(t)

)2
)

= 1,

and soµR is probability measure. Since

ReHν(iy) = −ReFν(iy)

|Fν(iy)|2
,

Equ. (14), (4) and the dominated convergence theorem yield that

λ2C1 = − lim
y→∞

ReHν(iy)

= − lim
y→∞

y2ReFν(iy)

= − lim
y→∞

∫

R

ty2

t2 + y2
dν(t)

= −
∫

R

tdν(t) = 0.

Hence,C1 = 0 and Equ. (11) holds.�
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2.2 Aronszajn-Donoghue theorem

Forλ 6= 0 define

Tλ,ω ≡ {x ∈ R |GR(x) <∞, x− ω + λ2FR(x+ i0) = 0},

Sλ,ω ≡ {x ∈ R |GR(x) = ∞, x− ω + λ2FR(x+ i0) = 0},

L ≡ {x ∈ R | ImFR(x+ i0) > 0}.

(15)

Since the analytic functionC+ ∋ z 7→ z − ω + λ2FR(z) is non-constant and has
a positive imaginary part, by a well known result in harmonicanalysis|Tλ,ω| =
|Sλ,ω| = 0. Equ. (8) implies that, forω 6= 0, x−ω+λ2FR(x+i0) = 0 is equivalent
toFλ,0(x+ i0) = −ω−1. Moreover, if one of these conditions is satisfied, then Equ.
(10) yields

ω2Gλ,0(x) = 1 + λ2GR(x).

Therefore, ifω 6= 0, then

Tλ,ω = {x ∈ R |Gλ,0(x) <∞, Fλ,0(x+ i0) = −ω−1},

Sλ,ω = {x ∈ R |Gλ,0(x) = ∞, Fλ,0(x+ i0) = −ω−1}.

The well-known Aronszajn-Donoghue theorem in spectral theory of rank one
perturbations (see [Ja, Si1]) translates to the following result concerning the WWA.

Theorem 1. 1. Tλ,ω is the set of eigenvalues ofhλ,ω. Moreover,

µλ,ωpp =
∑

x∈Tλ,ω

1

1 + λ2GR(x)
δx. (16)

If ω 6= 0, then also

µλ,ωpp =
∑

x∈Tλ,ω

1

ω2Gλ,0(x)
δx.

2. ω is not an eigenvalue ofhλ,ω for all λ 6= 0.
3. µλ,ωsc is concentrated onSλ,ω.
4. For all λ, ω, the setL is an essential support of the absolutely continuous spec-

trum ofhλ,ω. Moreoverspac(hλ,ω) = spac(hR) and

dµλ,ωac (x) =
1

π
ImFλ,ω(x+ i0) dx.

5. For a givenω, {µλ,ωsing |λ > 0} is a family of mutually singular measures.

6. For a givenλ 6= 0, {µλ,ωsing |ω 6= 0} is a family of mutually singular measures.
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2.3 The spectral theorem

In this subsectionλ 6= 0 andω are given real numbers. By the spectral theorem, there
exists a unique unitary operator

Uλ,ω : h → L2(R,dµλ,ω), (17)

such thatUλ,ωhλ,ω(Uλ,ω)−1 is the operator of multiplication byx on the Hilbert
spaceL2(R,dµλ,ω) andUλ,ω1 = 1l, where1l(x) = 1 for all x ∈ R. Moreover,

Uλ,ω = Uλ,ωac ⊕ Uλ,ωpp ⊕ Uλ,ωsc ,

where
Uλ,ωac : hac(hλ,ω) → L2(R,dµλ,ωac ),

Uλ,ωpp : hpp(hλ,ω) → L2(R,dµλ,ωpp ),

Uλ,ωsc : hsc(hλ,ω) → L2(R,dµλ,ωsc ),

are unitary. In this subsection we will describe these unitary operators. We shall
make repeated use of the following fact. Letµ be a positive Borel measure onR.
For any complex Borel measureν on R denote byν = νac + νsing the Lebesgue
decomposition ofν into absolutely continuous and singular parts w.r.t.µ. The Radon-
Nikodym derivative ofνac w.r.t.µ is given by

lim
y↓0

Pν(x, y)

Pµ(x, y)
=

dνac
dµ

(x),

for µ-almost everyx (see [Ja]). In particular, ifµ is Lebesgue measure, then

lim
y↓0

Pν(x, y) = π
dνac
dx

(x), (18)

for Lebesgue a.e.x. By Equ. (8),

ImFλ,ω(x+ i0) = λ2 |Fλ,ω(x+ i0)|2 ImFR(x+ i0), (19)

and so (18) yields that

dµλ,ωac

dx
= λ2|Fλ,ω(x+ i0)|2 dµR,ac

dx
.

In particular, sinceFλ,ω(x+ i0) 6= 0 for Lebesgue a.e.x, µR,ac andµλ,ωac are equiv-
alent measures.

Let φ = α⊕ ϕ ∈ h and

M(z) ≡ 1

2i

[

(1|(hλ,ω − z)−1φ) − (1|(hλ,ω − z)−1φ)

]

, z ∈ C+.

The formulas (7) and (9) yield that
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(1|(hλ,ω − z)−1φ) = Fλ,ω(z)

(

α− λ(f |(hR − z)−1ϕ)

)

, (20)

and so

M(z) = ImFλ,ω(z)

(

α− λ(f |(hR − z)−1ϕ)

)

− λFλ,ω(z)

(

y (f |((hR − x)2 + y2)−1ϕ)

)

= ImFλ,ω(z)

(

α− λ(f |(hR − z)−1ϕ)

)

− λFλ,ω(z) y

∫

R

f(t)ϕ(t)

(t− x)2 + y2
dµR(t).

This relation and (18) yield that forµR,ac-a.e.x,

M(x+ i0) = ImFλ,ω(x+ i0)

(

α− λ(f |(hR − x− i0)−1ϕ)

)

− λFλ,ω(x− i0)f(x)ϕ(x)π
dµR ac

dx
(x)

= ImFλ,ω(x+ i0)

(

α− λ(f |(hR − x− i0)−1ϕ)

)

− λFλ,ω(x− i0)f(x)ϕ(x) ImFR(x+ i0).

(21)

On the other hand, computingM(z) in the spectral representation (17) we get

M(z) = y

∫

R

(Uλ,ωφ)(t)

(t− x)2 + y2
dµλ,ω(t).

This relation and (18) yield that forµλ,ωac -a.e.x,

M(x+ i0) = (Uλ,ωac φ)(x)π
dµλ,ωac

dx
(x) = (Uλ,ωac φ)(x) ImFλ,ω(x+ i0).

SinceµR,ac andµλ,ωac are equivalent measures, comparison with the expression (21)
and use of Equ. (8) yield

Proposition 2. Letφ = α⊕ ϕ ∈ h. Then

(Uλ,ωac φ)(x) = α− λ(f |(hR − x− i0)−1ϕ) − f(x)ϕ(x)

λFλ,ω(x+ i0)
.

We now turn to the pure point partUλ,ωpp . Recall thatTλ,ω is the set of eigenvalues
of hλ,ω. Using the spectral representation (17), it is easy to provethat forx ∈ Tλ,ω

lim
y↓0

(1|(hλ,ω − x− iy)−1φ)

(1|(hλ,ω − x− iy)−11)
= lim

y↓0

F(Uλ,ωφ)µλ,ω (x+ iy)

Fλ,ω(x+ iy)
= (Uλ,ωφ)(x). (22)
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The relations (20) and (22) yield that forx ∈ Tλ,ω the limit

Hϕ(x+ i0) ≡ lim
y↓0

(f |(hR − x− iy)−1ϕ), (23)

exists and that(Uλ,ωφ)(x) = α− λHϕ(x+ i0). Hence, we have:

Proposition 3. Letφ = α⊕ ϕ ∈ h. Then forx ∈ Tλ,ω,

(Uλ,ωpp φ)(x) = α− λHϕ(x+ i0).

The assumptionx ∈ Tλ,ω makes the proof of (22) easy. However, this formula
holds in a much stronger form. It is a deep result of Poltoratskii [Po] (see also [Ja,
JL]) that

lim
y↓0

(1|(hλ,ω − x− iy)−1φ)

(1|(hλ,ω − x− iy)−11)
= (Uλ,ωφ)(x) for µλ,ωsing − a.e. x. (24)

Hence, the limit (23) exists and is finite forµλ,ωsing-a.e.x. Thus, we have:

Proposition 4. Letφ = α⊕ ϕ ∈ h. Then,

(Uλ,ωsingφ)(x) = α− λHϕ(x+ i0),

whereUλ,ωsing = Uλ,ωpp ⊕ Uλ,ωsc .

2.4 Scattering theory

Recall thathR is the operator of multiplication by the variablex on the space
L2(R,dµR). Uλ,ωhλ,ω(Uλ,ω)−1 is the operator of multiplication byx on the space
L2(R,dµλ,ω). Set

hR,ac ≡ hR|hac(hR), hλ,ω,ac ≡ hλ,ω|hac(hλ,ω).

Sincehac(hR) = L2(R,dµR,ac),

hac(hλ,ω) = (Uλ,ωac )−1L2(R,dµλ,ωac ),

and the measuresµR,ac andµλ,ωac are equivalent, the operatorshR,ac andhλ,ω,ac are
unitarily equivalent. Using (18) and the chain rule one easily checks that the operator

(Wλ,ωφ)(x) =

√

dµλ,ωac

dµR,ac
(x) (Uλ,ωac φ)(x) =

√

ImFλ,ω(x+ i0)

ImFR(x+ i0)
(Uλ,ωac φ)(x),

is an explicit unitary which takeshac(hλ,ω) ontohac(hR) and satisfies

Wλ,ωhλ,ω,ac = hR,acW
λ,ω.
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There are however many unitariesU : hac(hλ,ω) → hac(hR) with the intertwin-
ing property

Uhλ,ω,ac = hR,acU. (25)

Indeed, letϕ ∈ hac(hR) be a normalized cyclic vector forhR,ac. Then there is a
unique unitaryU such that (25) holds and

U1ac(hλ,ω)1 = cϕ,

wherec = ‖1ac(hλ,ω)1‖ is a normalization constant. On the other hand, any unitary
with the property (25) is uniquely specified by its action on the vector1ac(hλ,ω)1.
Note that

(Wλ,ω
1ac(hλ)1)(x) =

√

ImFλ,ω(x+ i0)

ImFR(x+ i0)
.

In this subsection we describe a particular pair of unitaries, called wave operators,
which satisfy (25).

Theorem 2. 1. The strong limits

U±
λ,ω ≡ s − lim

t→±∞
eithλ,ωe−ith01ac(h0), (26)

exist andRanU±
λ,ω = hac(hλ,ω).

2. The strong limits

Ω±
λ,ω ≡ s − lim

t→±∞
eith0e−ithλ,ω1ac(hλ,ω), (27)

exist andRanΩ±
λ,ω = hac(h0).

3. The mapsU±
λ,ω : hac(h0) → hac(hλ,ω) andΩ±

λ,ω : hac(hλ,ω) → hac(h0) are

unitary. U±
λ,ωΩ

±
λ,ω = 1ac(hλ,ω) andΩ±

λ,ωU
±
λ,ω = 1ac(h0). Moreover,Ω±

λ,ω

satisfies the intertwining relation (25).
4. TheS-matrixS ≡ Ω+

λ,ωU
−
λ,ω is unitary onhac(h0) and commutes withh0,ac.

This theorem is a basic result in scattering theory. The detailed proof can be
found in [Ka, RS3].

The wave operators and theS-matrix can be described as follows.

Proposition 5. Letφ = α⊕ ϕ ∈ h. Then

(Ω±
λ,ωφ)(x) = ϕ(x) − λf(x)Fλ,ω(x± i0)(α− λ(f |(hR − x∓ i0)−1ϕ)). (28)

Moreover, for anyψ ∈ hac(h0) one has(Sψ)(x) = S(x)ψ(x) with

S(x) = 1 + 2πiλ2Fλ,ω(x+ i0)|f(x)|2 dµR,ac

dx
(x). (29)
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Remark. The assumption thatf is a cyclic vector forhR is not needed in Theorem
2 and Proposition 5.
Proof. We deal only withΩ+

λ,ω. The case ofΩ−
λ,ω is completely similar. The formula

for U±
λ,ω follows from the formula forΩ±

λ,ω by duality (use Theorem 2). Given these
formulas, it is easy to compute theS-matrix.

Letψ ∈ hac(h0) = hac(hR). We start with the identity

(ψ|eith0e−ithλ,ωφ) = (ψ|φ) − iλ

∫ t

0

(ψ|eish0f)(1|e−ishλ,ωφ) ds. (30)

Note that(ψ|φ) = (ψ|ϕ), (ψ|eish0f) = (ψ|eishRf), and that

lim
t→∞

(ψ|eith0e−ithλ,ωφ) = lim
t→∞

(eithλ,ωe−ith0ψ|φ)

= (U+
λ,ωψ|φ)

= (ψ|Ω+
λ,ωφ).

Hence, by the Abel theorem,

(ψ|Ω+
λ,ωφ) = (ψ|ϕ) − lim

y↓0
iλL(y), (31)

where

L(y) =

∫ ∞

0

e−ys(ψ|eish0f)(1|e−ishλ,ωφ) ds.

Now,

L(y) =

∫ ∞

0

e−ys(ψ|eish0f)(1|e−ishλ,ωφ) ds

=

∫

R

ψ(x)f(x)

[∫ ∞

0

(1|eis(x+iy−hλ,ω)φ)ds

]

dµR,ac(x)

= −i

∫

R

ψ(x)f(x)(1|(hλ,ω − x− iy)−1φ) dµR,ac(x)

= −i

∫

R

ψ(x)f(x)gy(x) dµR,ac(x),

(32)

where
gy(x) ≡ (1|(hλ,ω − x− iy)−1φ).

Recall that for Lebesgue a.e.x,

gy(x) → g(x) ≡ (1|(hλ,ω − x− i0)−1φ), (33)

asy ↓ 0. By the Egoroff theorem (see e.g. Problem 16 in Chapter 3 of [Ru], or any
book on measure theory), for anyn > 0 there exists a measurable setRn ⊂ R such
that|R \Rn| < 1/n andgy → g uniformly onRn. The set

⋃

n>0

{ψ ∈ L2(R,dµR,ac) | suppψ ⊂ Rn},
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is clearly dense inhac(hR). For anyψ in this set the uniform convergencegy → g
on suppψ implies that there exists a constantCψ such that

|ψf(gy − g)| ≤ Cψ|ψf | ∈ L1(R,dµR,ac).

This estimate and the dominated convergence theorem yield that

lim
y↓0

∫

R

ψ f(gy − g)dµR,ac = 0.

On the other hand, Equ. (31) and (32) yield that the limit

lim
y↓0

∫

R

ψ fgydµR,

exists, and so the relation

(ψ|Ω+
λ,ωφ) = (ψ|ϕ) − λ

∫

R

ψ(x)f(x)(1|(hλ,ω − x− i0)−1φ)dµR,ac(x),

holds for a dense set of vectorsψ. Hence,

(Ω+
λ,ωφ)(x) = ϕ(x) − λf(x)(1|(hλ,ω − x− i0)−1φ),

and the formula (20) completes the proof.�

2.5 Spectral averaging

We will freely use the standard measurability results concerning the measure-valued
function(λ, ω) 7→ µλ,ω. The reader not familiar with these facts may consult [CFKS,
CL, Ja].

Let λ 6= 0 and

µλ(B) =

∫

R

µλ,ω(B) dω,

whereB ⊂ R is a Borel set. Obviously,µλ is a Borel measure onR. The following
(somewhat surprising) result is often calledspectral averaging.

Proposition 6. The measureµλ is equal to the Lebesgue measure and for allg ∈
L1(R,dx),

∫

R

g(x)dx =

∫

R

[∫

R

g(x)dµλ,ω(x)

]

dω.

The proof of this proposition is elementary and can be found in [Ja, Si1].
One can also average with respect to both parameters. It follows from Proposition

6 that the averaged measure

µ(B) =
1

π

∫

R2

µλ,ω(B)

1 + λ2
dλdω,

is also equal to the Lebesgue measure.
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2.6 Simon-Wolff theorems

Recall thatx + λ2FR(x + i0) andFλ,0(x + i0) are finite and non-vanishing for
Lebesgue a.e.x. Forλ 6= 0, Equ. (10) gives that for Lebesgue a.ex,

Gλ,0(x) =
1 + λ2GR(x)

|x+ λ2FR(x+ i0)|2 = |Fλ,0(x+ i0)|2(1 + λ2GR(x)).

These observations yield:

Lemma 1. LetB ⊂ R be a Borel set andλ 6= 0. ThenGR(x) < ∞ for Lebesgue
a.e.x ∈ B iff Gλ,0(x) <∞ for Lebesgue a.e.x ∈ B.

This lemma and the Simon-Wolff theorems in rank one perturbation theory (see
[Ja, Si1, SW]) yield:

Theorem 3.LetB ⊂ R be a Borel set. Then the following statements are equivalent:

1.GR(x) <∞ for Lebesgue a.e.x ∈ B.
2. For all λ 6= 0, µλ,ωcont(B) = 0 for Lebesgue a.e.ω ∈ R. In particular,µλ,ωcont(B) =

0 for Lebesgue a.e.(λ, ω) ∈ R
2.

Theorem 4.LetB ⊂ R be a Borel set. Then the following statements are equivalent:

1. ImFR(x+ i0) = 0 andGR(x) = ∞ for Lebesgue a.e.x ∈ B.
2. For all λ 6= 0, µλ,ωac (B) + µλ,ωpp (B) = 0 for Lebesgue a.e.ω ∈ R. In particular,
µλ,ωac (B) + µλ,ωpp (B) = 0 for Lebesgue a.e.(λ, ω) ∈ R

2.

Theorem 5.LetB ⊂ R be a Borel set. Then the following statements are equivalent:

1. ImFR(x+ i0) > 0 for Lebesgue a.e.x ∈ B.
2. For all λ 6= 0, µλ,ωsing(B) = 0 for Lebesgue a.e.ω ∈ R. In particular,µλ,ωsing(B) =

0 for Lebesgue a.e.(λ, ω) ∈ R
2.

Note that while the Simon-Wolff theorems hold for a fixedλ and for a.e.ω, we
cannot claim that they hold for a fixedω and for a.e.λ—from Fubini’s theorem we
can deduce only that for a.e.ω the results hold for a.e.λ. This is somewhat annoying
since in many applications for physical reasons it is natural to fix ω and varyλ. The
next subsection deals with this issue.

2.7 Fixing ω

The results discussed in this subsection are not an immediate consequence of the
standard results of rank one perturbation theory and for this reason we will provide
complete proofs.

In this subsectionω is a fixed real number. Let

µω(B) =

∫

R

µλ,ω(B)dλ,
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whereB ⊂ R is a Borel set. Obviously,µω is a positive Borel measure onR and for
all Borel measurableg ≥ 0,

∫

R

g(t)dµω(t) =

∫

R

[∫

R

g(t)dµλ,ω(t)

]

dλ,

where both sides are allowed to be infinite.
We will study the measureµω by examining the boundary behavior of its Poisson

transformPω(x, y) asy ↓ 0. In this subsection we set

h(z) ≡ (ω − z)FR(z).

Lemma 2. For z ∈ C+,

Pω(z) =
π√
2

√

|h(z)| + Reh(z)

|h(z)| .

Proof. We start with

Pω(x, y) =

∫

R

[∫

R

y

(t− x)2 + y2
dµλ,ω(t)

]

dλ

= Im

∫

R

Fλ,ω(x+ iy) dλ.

Equ. (8) and a simple residue calculation yield
∫

R

Fλ,ω(x+ iy)dλ =
−πi

FR(z)
√

ω−z
FR(z)

,

where the branch of the square root is chosen to be inC+. An elementary calculation
shows that

Pω(x, y) = Im
iπ

√

h(x+ iy)
,

where the branch of the square root is chosen to have positivereal part, explicitly

√
w ≡ 1√

2

(√

|w| + Rew + i sign(Imw)
√

|w| − Rew
)

. (34)

This yields the statement.�

Theorem 6.The measureµω is absolutely continuous with respect to Lebesgue mea-
sure and

dµω

dx
(x) =

√

|h(x+ i0)| + Reh(x+ i0)√
2 |h(x+ i0)|

. (35)

The set

E ≡ {x | ImFR(x+ i0) > 0} ∪ {x | (ω − x)FR(x+ i0) > 0},

is an essential support forµω andµλ,ω is concentrated onE for all λ 6= 0.



18 V. Jaǩsić, E. Kritchevski, and C.-A. Pillet

Proof. By Theorem 1,ω is not an eigenvalue ofhλ,ω for λ 6= 0. This implies that
µω({ω}) = 0. By the theorem of de la Vallée Poussin (for detailed proof see e.g.
[Ja]),µωsing is concentrated on the set

{x |x 6= ω and lim
y↓0

Pω(x+ iy) = ∞}.

By Lemma 2, this set is contained in

S ≡ {x | lim
y↓0

FR(x+ iy) = 0}.

SinceS ∩ Sλ,ω ⊂ {ω}, Theorem 1 implies thatµλ,ωsing(S) = 0 for all λ 6= 0. Since
|S| = 0, µλ,ωac (S) = 0 for all λ. We conclude thatµλ,ω(S) = 0 for all λ 6= 0, and so

µω(S) =

∫

R

µλ,ω(S) dλ = 0.

Hence,µωsing = 0. From Theorem 1 we now get

dµω(x) = dµωac(x) =
1

π
ImFω(x+ i0) dx,

and (35) follows from Lemma 2. The remaining statements are obvious.�

We are now ready to state and prove the Simon-Wolff theorems for fixedω.

Theorem 7.LetB ⊂ R be a Borel set. Consider the following statements:

1.GR(x) <∞ for Lebesgue a.e.x ∈ B.
2. µλ,ωcont(B) = 0 for Lebesgue a.e.λ ∈ R.

Then(1) ⇒ (2). If B ⊂ E , then also(2) ⇒ (1).

Proof. LetA ≡ {x ∈ B |GR(x) = ∞} ∩ E .
(1)⇒(2) By assumption,A has zero Lebesgue measure. Theorem 6 yields that
µω(A) = 0. SinceGR(x) < ∞ for Lebesgue a.e.x ∈ B, ImFR(x + i0) = 0
for Lebesgue a.e.x ∈ B. Hence, for allλ, ImFλ,ω(x + i0) = 0 for Lebesgue a.e.
x ∈ B. By Theorem 1,µλ,ωac (B) = 0 and the measureµλ,ωsc |B is concentrated on the
setA for all λ 6= 0. Then,

∫

R

µλ,ωsc (B) dλ =

∫

R

µλ,ωsc (A) dλ ≤
∫

R

µλ,ω(A) dλ = µω(A) = 0.

Hence,µλ,ωsc (B) = 0 for Lebesgue a.eλ.
(2)⇒(1) Assume that the setA has positive Lebesgue measure. By Theorem 1,
µλ,ωpp (A) = 0 for all λ 6= 0, and

∫

R

µλ,ωcont(A) dλ =

∫

R

µλ,ω(A) dλ = µω(A) > 0.

Hence, for a set ofλ’s of positive Lebesgue measure,µλ,ωcont(B) > 0. �
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Theorem 8.LetB ⊂ R be a Borel set. Consider the following statements:

1. ImFR(x+ i0) = 0 andGR(x) = ∞ for Lebesgue a.e.x ∈ B.
2. µλ,ωac (B) + µλ,ωpp (B) = 0 for Lebesgue a.e.λ ∈ R.

Then(1) ⇒ (2). If B ⊂ E , then also(2) ⇒ (1).

Proof. LetA ≡ {x ∈ B |GR(x) <∞} ∩ E .
(1)⇒(2) SinceImFR(x+ i0) = 0 for Lebesgue a.e.x ∈ B, Theorem 1 implies that
µλ,ωac (B) = 0 for all λ. By Theorems 1 and 6, forλ 6= 0, µλ,ωpp |B is concentrated on
the setA. SinceA has Lebesgue measure zero,

∫

R

µλ,ωpp (A) dλ ≤ µω(A) = 0,

and soµλ,ωpp (B) = 0 for Lebesgue a.e.λ.
(2)⇒(1) If ImFR(x+i0) > 0 for a set ofx ∈ B of positive Lebesgue measure, then,
by Theorem 1,µλ,ωac (B) > 0 for all λ. Assume thatImFR(x+i0) = 0 for Lebesgue
a.e.x ∈ B and thatA has positive Lebesgue measure. By Theorem 1,µλ,ωcont(A) = 0
for all λ 6= 0 and sinceA ⊂ E , Theorem 6 implies

∫

R

µλ,ωpp (A) dλ =

∫

R

µλ,ω(A) dλ = µω(A) > 0.

Thus, we must have thatµλ,ωpp (B) > 0 for a set ofλ’s of positive Lebesgue measure.
�

Theorem 9.LetB ⊂ R be a Borel set. Consider the following statements:

1. ImFR(x+ i0) > 0 for Lebesgue a.e.x ∈ B.
2. µλ,ωsing(B) = 0 for Lebesgue a.e.λ ∈ R.

Then(1) ⇒ (2). If B ⊂ E , then also(2) ⇒ (1).

Proof. (1)⇒(2) By Theorem 1, forλ 6= 0 the measureµλ,ωsing|B is concentrated on
the setA ≡ {x ∈ B | ImFR(x + i0) = 0} ∩ E . By assumption,A has Lebesgue
measure zero and

∫

R

µλ,ωsing(A) dλ ≤
∫

R

µλ,ω(A) dλ = µω(A) = 0.

Hence, for Lebesgue a.e.λ ∈ R, µλsing(B) = 0.
(2)⇒(1) Assume thatB ⊂ E and that the set

A ≡ {x ∈ B | ImFR(x+ i0) = 0},
has positive Lebesgue measure. By Theorem 1,µλ,ωac (A) = 0 for all λ, and

∫

R

µλ,ωsing(A) dλ =

∫

R

µλ,ω(A) dλ = µω(A) > 0.

Hence, for a set ofλ’s of positive Lebesgue measure,µλ,ωsing(B) > 0. �
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2.8 Examples

In all examples in this subsectionhR = L2([a, b],dµR) andhR is the operator of
multiplication byx. In Examples 1-9[a, b] = [0, 1]. In Examples 1 and 2 we do not
assume thatf is a cyclic vector forhR.

Example 1.In this example we deal with the spectrum outside]0, 1[. Let

Λ0 =

∫ 1

0

|f(x)|2
x

dµR(x), Λ1 =

∫ 1

0

|f(x)|2
x− 1

dµR(x).

Obviously,Λ0 ∈ ]0,∞] andΛ1 ∈ [−∞, 0[. If λ2 > ω/Λ0, thenhλ,ω has a unique
eigenvaluee < 0 which satisfies

ω − e− λ2

∫ 1

0

|f(x)|2
x− e

dµR(x) = 0. (36)

If λ2 < ω/Λ0, thenhλ,ω has no eigenvalue in] −∞, 0[. 0 is an eigenvalue ofhλ,ω
iff λ2 = ω/Λ0 and

∫ 1

0
|f(x)|2x−2dµR(x) <∞. Similarly, if

(ω − 1)/Λ1 < λ2,

thenhλ,ω has a unique eigenvaluee > 1 which satisfies (36), and if

(ω − 1)/Λ1 > λ2,

thenhλ,ω has no eigenvalue in]1,∞[. 1 is an eigenvalue ofhλ,ω iff

(ω − 1)/Λ1 = λ2,

and
∫ 1

0
|f(x)|2(x− 1)−2dµR(x) <∞.

Example 2.Let dµR(x) ≡ dx|[0,1], let f be a continuous function on]0, 1[, and let

S = {x ∈ ]0, 1[ | f(x) 6= 0}.

The setS is open in]0, 1[, and the cyclic space generated byhR andf isL2(S,dx).
The spectrum of

hλ,ω|(C⊕L2(S,dx))⊥ ,

is purely absolutely continuous and equal to[0, 1]\S. Since forx ∈ S, limy↓0 ImFR(x+
iy) = π|f(x)|2 > 0, the spectrum ofhλ,ω in S is purely absolutely continuous for
all λ 6= 0. Hence, if

S =
⋃

n

]an, bn[,

is the decomposition ofS into connected components, then the singular spectrum of
hλ,ω inside [0, 1] is concentrated on the set∪n{an, bn}. In particular,hλ,ω has no
singular continuous spectrum. A pointe ∈ ∪n{an, bn} is an eigenvalue ofhλ,ω iff
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∫ 1

0

|f(x)|2
(x− e)2

dx <∞ and ω − e− λ2

∫ 1

0

|f(x)|2
x− e

dx = 0. (37)

Givenω, for eache for which the first condition holds there are precisely twoλ’s
such thate is an eigenvalue ofhλ,ω. Hence, givenω, the set ofλ’s for which hλ,ω
has eigenvalues in]0, 1[ is countable. Similarly, givenλ, the set ofω’s for whichhλ,ω
has eigenvalues in]0, 1[ is countable.

Let
Z ≡ {x ∈ [0, 1] | f(x) = 0},

andg ≡ supx∈Z GR(x). By (16), the number of eigenvalues ofhλ,ω is bounded by
1 + λ2g. Hence, ifg <∞, thenhλ,ω can have at most finitely many eigenvalues. If,
for example,f is δ-Hölder continuous,i.e.,

|f(x) − f(y)| ≤ C|x− y|δ,

for all x, y ∈ [0, 1] and someδ > 1/2, then

g = sup
x∈Z

∫ 1

0

|f(t)|2
(t− x)2

dt = sup
x∈Z

∫ 1

0

|f(t) − f(x)|2
(t− x)2

dt

≤ sup
x∈Z

∫ 1

0

C

(t− x)2(1−δ)
dt <∞,

andhλ,ω has at most finitely many eigenvalues. On the other hand, given λ 6= 0, ω,
and a finite sequenceE ≡ {e1, . . . , en} ∈]0, 1[, one can construct aC∞ functionf
with bounded derivatives such thatE is precisely the set of eigenvalues ofhλ,ω in
]0, 1[.

More generally, letE ≡ {en} ⊂]0, 1[ be a discrete set. (By discrete we mean
that for alln, infj 6=n |en − ej | > 0 — the accumulation points ofE are not inE).
Letλ 6= 0 andω be given and assume thatω is not an accumulation point ofE. Then
there is aC∞ functionf such thatE is precisely the set of eigenvalues ofhλ,ω in
]0, 1[. Of course, in this casef ′(x) cannot be bounded. The construction of a suchf
is somewhat lengthy and can be found in [Kr].

In the remaining examples we takef ≡ 1. The next two examples are based on
[How].

Example 3. LetµR be a pure point measure with atomsµR(xn) = an. Then

GR(x) =

∞∑

n=1

an
(x− xn)2

.

If
∑

n

√
an < ∞, thenGR(x) < ∞ for Lebesgue a.e.x ∈ [0, 1] (see Theorem 3.1

in [How]). Hence, by Simon-Wolff theorems 3 and 7, for a fixedλ 6= 0 and Lebesgue
a.e.ω, and for a fixedω and Lebesgue a.e.λ, hλ,ω has only a pure point spectrum.
On the other hand, for a fixedλ 6= 0, there is a denseGδ set ofω ∈ R such that the
spectrum ofhλ,ω on ]0, 1[ is purely singular continuous [Gor, DMS].
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Example 4 (continuation).Assume thatxn = xn(w) are independent random vari-
ables uniformly distributed on[0, 1]. We keep thean’s deterministic and assume that
∑√

an = ∞. Then, for a.e.w, GR,w(x) = ∞ for Lebesgue a.e.x ∈ [0, 1] (see
Theorem 3.2 in [How]). Hence, by Simon-Wolff theorems 4 and 8, for a fixedλ 6= 0
and Lebesgue a.e.ω, and for a fixedω and Lebesgue a.e.λ, the spectrum ofhλ,ω(w)
on [0, 1] is singular continuous with probability1.

Example 5.Let ν be an arbitrary probability measure on[0, 1]. Let

dµR(x) =
1

2

(
dx|[0,1] + dν(x)

)
.

Since for allx ∈]0, 1[,

lim inf
y↓0

ImFR(x+ iy) ≥ π

2
,

the operatorhλ,ω has purely absolutely continuous spectrum on[0, 1] for all λ 6=
0. In particular, the singular spectrum ofν disappears under the influence of the
perturbation for allλ 6= 0.

Example 6.This example is due to Simon-Wolff [SW]. Let

µn = 2−n
2n

∑

j=1

δj2−n ,

andµR =
∑

n anµn, wherean > 0,
∑

n an = 1 and
∑

n 2nan = ∞. The spectrum
of h0,ω is pure point and equal to[0, 1]∪{ω}. For anyx ∈ [0, 1] there isjx such that
|jx/2n − x| ≤ 2−n. Hence, for alln,

∫

R

dµn(t)

(t− x)2
≥ 2n,

andGR(x) = ∞ for all x ∈ [0, 1]. We conclude that for allλ 6= 0 and allω the
spectrum ofhλ,ω on [0, 1] is purely singular continuous.

Example 7.Let µC be the standard Cantor measure (see [RS1]). Set

νj,n(A) ≡ µC(A+ j2−n),

and

µR ≡ c χ[0,1]

∞∑

n=1

n−2
2n

∑

j=1

νj,n,

wherec is the normalization constant. ThenGR(x) = ∞ for all x ∈ [0, 1] (see
Example 5 in Section II.5 of [Si2]), and the spectrum ofhλ,ω on [0, 1] is purely
singular continuous for allλ, ω.
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Example 8.The following example is due to del Rio and Simon [DS] (see also
Example 7 in Section II.5 of [Si2]). Let{rn} be the set of rationals in[0, 1],
an ≡ min(3−n−1, rn, 1 − rn), andS ≡ ∪n(rn − an, rn + an). The setS is dense
in [0, 1] and |S| ≤ 1/3. Let dµR = |S|−1χSdx. The spectrum ofhR is purely
absolutely continuous and equal to[0, 1]. The setS is the essential support of this
absolutely continuous spectrum. Clearly, for allλ, ω, spac(hλ,ω) = [0, 1]. By Theo-
rem 5, for any fixedλ 6= 0, hλ,ω will have some singular spectrum in[0, 1] \ S for a
set ofω’s of positive Lebesgue measure. It is not difficult to show thatGR(x) < ∞
for Lebesgue a.e.x ∈ [0, 1] \ S. Hence, for a fixedλ, hλ,ω will have no singular
continuous spectrum for Lebesgue a.e.ω but it has some point spectrum in[0, 1] \ S
for a set ofω’s of positive Lebesgue measure.
For a givenω, hλ,ω has no singular continuous spectrum for Lebesgue a.e.λ. Since
the setS is symmetric with respect to the point1/2, we have that for allz ∈ C±,
ReFR(z) = −ReFR(−z + 1/2). Hence,

ReFR(x) = −ReFR(−x+ 1/2), (38)

and if |ω| ≥ 1, then the set

{x ∈ [0, 1] \ S | (ω − x)FR(x) > 0}, (39)

has positive Lebesgue measure. Theorem 9 yields that for a givenω 6∈]0, 1[, hλ,ω
will have some point spectrum in[0, 1] \ S for a set ofλ’s of positive Lebesgue
measure. Ifω ∈]0, 1[, the situation is more complex and depends on the choice of
enumeration of the rationals. The enumeration can be alwayschosen in such a way
that for all0 < ǫ < 1, |S ∩ [0, ǫ]| < ǫ. In this case for any givenω the set (39) has
positive Lebesgue measure andhλ,ω will have some singular continuous spectrum
in [0, 1] \ S for a set ofλ’s of positive Lebesgue measure.

Example 9.This example is also due to del Rio and Simon [DS] (see also Example
8 in Section II.5 of [Si2]). Let

Sn =

2n−1⋃

j=1

]
j

2n
− 1

4n22n
,
j

2n
+

1

4n22n

[

,

andS = ∪nSn. The setS is dense in[0, 1] and|S| < 1. Let dµR = |S|−1χS dx.
Then the absolutely continuous spectrum ofhλ,ω is equal to[0, 1] for all λ, ω. One
easily shows thatGR(x) = ∞ on [0, 1]. Hence, for a fixedλ, hλ,ω will have no point
spectrum on[0, 1] for Lebesgue a.e.ω but it has some singular continuous spectrum
in [0, 1] \ S for a set ofω’s of positive Lebesgue measure.

For a givenω, hλ,ω will have no point spectrum inside[0, 1] for Lebesgue a.e.λ.
The setS is symmetric with respect to1/2 and (38) holds. Since for any0 < ǫ < 1,
|S ∩ [0, ǫ]| < ǫ, for any givenω the set

{x ∈ [0, 1] \ S | (ω − x)FR(x) > 0},



24 V. Jaǩsić, E. Kritchevski, and C.-A. Pillet

has positive Lebesgue measure. Hence, Theorem 9 yields thatfor a givenω, hλ,ω
will have some singular continuous spectrum in[0, 1] \ S for a set ofλ’s of positive
Lebesgue measure.

Example 10.Proposition 1 and a theorem of del Rio and Simon [DS] yield that there
exist a bounded interval[a, b], a Borel probability measureµR on [a, b] andλ0 > 0
such that:

1. spac(hλ,ω) = [a, b] for all λ, ω.
2. for a set ofω’s of positive Lebesgue measure,hω,λ0

has embedded point spec-
trum in [a, b].

3. for a set ofω’s of positive Lebesgue measure,hω,λ0
has embedded singular

continuous spectrum in[a, b].

Example 11.Proposition 1 and a theorem of del Rio-Fuentes-Poltoratskii [DFP] yield
that there exist a bounded interval[a, b], a Borel probability measureµR on [a, b] and
λ0 > 0 such that:

1. spac(hλ,ω) = [a, b] for all λ, ω.
2. for allω ∈ [0, 1], the spectrum ofhω,λ0

is purely absolutely continuous.
3. for allω 6∈ [0, 1], [a, b] ⊂ spsing(hω,λ0

).

2.9 Digression: the semi-circle law

In the proof of Proposition 1 we have solved the equation (11)for µR. In this sub-
section we will find the fixed point of the equation (11). More precisely, we will find
a finite Borel measureν whose Borel transform satisfies the functional equation

H(z) =
1

−z − λ2H(z)
,

or, equivalently
λ2H(z)2 + zH(z) + 1 = 0. (40)

The unique analytic solution of this equation is

H(z) =

√
z2 − 4λ2 − z

2λ2
,

a two-valued function which can be made single valued by cutting the complex plane
along the line segment[−2|λ|, 2|λ|]. Only one branch has the Herglotz property
H(C+) ⊂ C+. This branch is explicitly given by

H(z) =
1

|λ|
ξ − 1

ξ + 1
, ξ ≡

√

z − 2|λ|
z + 2|λ| ,

where the branch of the square root is determined byRe ξ > 0 (the so-called princi-
pal branch). In particular,H(x+iy) ∼ iy−1 asy → +∞, and by a well known result
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in harmonic analysis (see e.g. [Ja]) there exists a unique Borel probability measureν
such thatFν(z) = H(z) for z ∈ C+. For allx ∈ R,

lim
y↓0

ImFν(x+ iy) = hλ(x),

where

hλ(x) =







√
4λ2 − x2

2λ2
if |x| ≤ 2|λ|,

0 if |x| > 2|λ|.
We deduce that the measureν is absolutely continuous w.r.t. Lebesgue measure and
that

dν(x) = π−1hλ(x)dx.

Of course,ν is the celebrated Wigner semi-circle law which naturally arises in the
study of the eigenvalue distribution of certain random matrices, see e.g. [Meh]. The
result of this computation will be used in several places in the remaining part of our
lectures.

3 The perturbative theory

3.1 The Radiating Wigner-Weisskopf atom

In this section we consider a specific class of WWA models whichsatisfy the follow-
ing set of assumptions.

Assumption (A1) hR = L2(X,dx;K), whereX = (e−, e+) ⊂ R is an open (pos-
sibly infinite) interval andK is a separable Hilbert space. The HamiltonianhR ≡ x
is the operator of multiplication byx.

Note that the spectrum ofhR is purely absolutely continuous and equal toX̄. For
notational simplicity in this section we do not assume thatf is a cyclic vector forhR.
This assumption is irrelevant for our purposes: since the cyclic spaceh1 generated
by hλ and1 is independent ofλ for λ 6= 0, so ish⊥

1 ⊂ hR andhλ|h⊥

1
= hR|h⊥

1
has

purely absolutely continuous spectrum.

Assumption (A2)The function

g(t) =

∫

X

e−itx‖f(x)‖2
K dx,

is inL1(R,dt).

This assumption implies thatx 7→ ‖f(x)‖K is a bounded continuous function on
X̄. Note also that forIm z > 0,
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FR(z) =

∫

X

‖f(x)‖2
K

x− z
dx = i

∫ ∞

0

eizsg(s) ds.

Hence,FR(z) is bounded and continuous on the closed half-planeC+. In particular,
the functionFR(x + i0) is bounded and continuous onR. If in addition tng(t) ∈
L1(R,dt) for some positive integern, then‖f(x)‖2

K andFR(x + i0) aren-times
continuously differentiable with bounded derivatives.

Assumption (A3)ω ∈ X and‖f(ω)‖K > 0.

This assumption implies that the eigenvalueω of h0 is embedded in its absolutely
continuous spectrum.

Until the end of this section we will assume that Assumptions(A1)-(A3) hold.
We will call the WWA which satisfies (A1)-(A3) the Radiating Wigner-Weisskopf
Atom (abbreviated RWWA).

In contrast to the previous section, until the end of the paper we will keepω fixed
and consideronlyλ as the perturbation parameter. In the sequel we drop the subscript
ω and writeFλ for Fλ,ω, etc.

Since‖f(x)‖K is a continuous function ofx, the argument of Example 2 in
Subsection 2.8 yields thathλ has no singular continuous spectrum for allλ. However,
hλ may have eigenvalues (and, ifX 6= R, it will certainly have them forλ large
enough). Forλ small, however, the spectrum ofhλ is purely absolutely continuous.

Proposition 7. There existsΛ > 0 such that, for0 < |λ| < Λ, the spectrum ofhλ is
purely absolutely continuous and equal tōX.

Proof. By Theorem 1, the singular spectrum ofhλ is concentrated on the set

S = {x ∈ R |ω − x− λ2FR(x+ i0) = 0}.

SinceImFR(ω + i0) = π‖f(ω)‖2
K > 0, there isǫ > 0 such that

ImFR(x+ i0) > 0,

for |x − ω| < ǫ. Let m ≡ maxx∈R |FR(x + i0)| andΛ ≡ (ǫ/m)1/2. Then, for
|λ| < Λ andx 6∈]ω− ǫ, ω+ ǫ[, one has|ω−x| > λ2|FR(x+i0)|. Hence,S is empty
for 0 < |λ| < Λ, and the spectrum ofhλ|h1

is purely absolutely continuous.�

We finish this subsection with two examples.

Example 1.Assume thathR = L2(Rd,ddx) and lethR = −∆, where∆ is the usual
Laplacian inR

d. The Fourier transform

ϕ̃(k) =
1

(2π)d/2

∫

Rd

e−ik·xϕ(x) dx,

maps unitarilyL2(Rd,ddx) onto L2(Rd,ddk) and the HamiltonianhR becomes
multiplication by |k|2. By passing to polar coordinates withr = |k| we identify
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L2(Rd,ddk) with L2(R+, r
d−1dr;K), whereK = L2(Sd−1,dσ), Sd−1 is the unit

sphere inRd, anddσ is its surface measure. The operatorhR becomes multiplication
by r2. Finally, the map

ϕ#(x) = 2−1/2x
d−2
4 ϕ̃(

√
x),

mapsL2(Rd,ddx) unitarily ontoL2(X,dx;K) with X = (0,∞), and

(hRϕ)#(x) = xϕ#(x).

This representation ofhR andhR (sometimes called thespectralor theenergyrep-
resentation) clearly satisfies (A1).

The function f# satisfies (A2) iff the functiong(t) = (f |e−ithRf) is in
L1(R,dt). If f ∈ L2(Rd,ddx) is compactly supported, theng(t) = O(t−d/2), and
so if d ≥ 3, then (A2) holds for all compactly supportedf . If d = 1, 2, then (A2)
holds if f is in the domain of|x|2 and its Fourier transform vanishes in a neighbor-
hood of the origin. The proofs of these facts are simple and can be found in [BR2],
Example 5.4.9.

Example 2.Let hR = ℓ2(Z+), whereZ+ = {1, 2, · · ·}, and let

hR =
1

2

∑

n∈Z+

(

(δn| · )δn+1 + (δn+1| · )δn
)

,

whereδn is the Kronecker delta function atn ∈ Z+. hR is the usual discrete Lapla-
cian onℓ2(Z+) with Dirichlet boundary condition. The Fourier-sine transform

ϕ̃(k) ≡
√

2

π

∑

n∈Z+

ϕ(n) sin(kn),

mapsℓ2(Z+) unitarily ontoL2([0, π],dk) and the HamiltonianhR becomes multi-
plication bycos k. Finally, the map

ϕ#(x) = (1 − x2)−1/4ϕ̃(arccosx),

mapsℓ2(Z+) unitarily ontoL2(X,dx), whereX = (−1, 1) and

(hRϕ)#(x) = xϕ#(x).

If f has bounded support inZ+, then|f#(x)|2 = (1−x2)1/2Pf (x), wherePf (x) is
a polynomial inx. A simple stationary phase argument yields thatg(t) = O(|t|−3/2)
and Assumption (A2) holds.

3.2 Perturbation theory of embedded eigenvalue

Until the end of this sectionΛ is the constant in Proposition 7.
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Note that the operatorh0 = ω ⊕ x has the eigenvalueω embedded in the abso-
lutely continuous spectrum ofx. On the other hand, for0 < |λ| < Λ the operatorhλ
has no eigenvalue—the embedded eigenvalue has ”dissolved” in the absolutely con-
tinuous spectrum under the influence of the perturbation. Inthis subsection we will
analyze this phenomenon. At its heart are the concepts ofresonanceandlife-timeof
an embedded eigenvalue which are of profound physical importance.

We setD(w, r) ≡ {z ∈ C | |z − w| < r}. In addition to (A1)-(A3) we will need
the following assumption.

Assumption (A4)There existsρ > 0 such that the function

C+ ∋ z → FR(z),

has an analytic continuation across the interval]ω − ρ, ω + ρ[ to the regionC+ ∪
D(ω, ρ). We denote the extended function byF+

R(z).

It is important to note that forIm z < 0, F+
R(z) is differentfrom FR(z). This is

obvious from the fact that

ImFR(x+ i0) − ImFR(x− i0) = 2π‖f(x)‖2
K > 0,

nearω. In particular, if (A4) holds, thenρ must be such that]ω − ρ, ω + ρ[⊂ X.
Until the end of this subsection we will assume that Assumptions (A1)-(A4) hold.

Theorem 10. 1. The functionFλ(z) = (1|(hλ − z)−11) has a meromorphic con-
tinuation fromC+ to the regionC+ ∪ D(ω, ρ). We denote this continuation by
F+
λ (z).

2. Let 0 < ρ′ < ρ be given. Then there isΛ′ > 0 such that for|λ| < Λ′ the
only singularity ofF+

λ (z) in D(ω, ρ′) is a simple pole atω(λ). The function
λ 7→ ω(λ) is analytic for|λ| < Λ′ and

ω(λ) = ω + a2λ
2 +O(λ4),

wherea2 ≡ −FR(ω + i0). In particular, Im a2 = −π‖f(ω)‖2
K < 0.

Proof. Part (1) is simple—Assumption A4 and Equ. (8) yield that

F+
λ (z) =

1

ω − z − λ2F+
R(z)

,

is the mermorphic continuation ofC+ ∋ z 7→ Fλ(z) to C+ ∪D(ω, ρ).
For a givenρ′, chooseΛ′ > 0 such that

ρ′ > |Λ′|2 sup
|z|=ρ′

|F+
R(z)|.

By Rouch́e’s theorem, there is anǫ > 0 such that for|λ| < Λ′ the functionω − z −
λ2F+

R(z) has a unique simple zeroω(λ) insideD(ω, ρ′ + ǫ) such that|ω(λ)− ω| <
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ρ′ − ǫ. This yields thatF+
λ (z) is analytic inC+ ∪D(ω, ρ′ + ǫ) except for a simple

pole atω(λ). The function

P (λ) ≡
∮

|ω−z|=ρ′
zF+

λ (z)dz =

∞∑

n=0

λ2n

∮

|ω−z|=ρ′
z

(
F+
R(z)

ω − z

)n
dz

ω − z
,

is analytic for|λ| < Λ′. Similarly, the function

Q(λ) ≡
∮

|ω−z|=ρ′
F+
λ (z)dz =

∞∑

n=0

λ2n

∮

|ω−z|=ρ′

(
F+
R(z)

ω − z

)n
dz

ω − z
, (41)

is analytic and non-zero for|λ| < Λ′. Since

ω(λ) =
P (λ)

Q(λ)
,

we see thatω(λ) is analytic for|λ| < Λ with the power series expansion

ω(λ) =

∞∑

n=0

λ2na2n.

Obviously,a0 = ω and

a2 = − 1

2πi

∮

|ω−z|=ρ′

F+
R(z)

z − ω
dz = −F+

R(ω) = −FR(ω + i0).

The same formula can be obtained by implicit differentiation of

ω − ω(λ) − λ2F+
R(ω(λ)) = 0,

atλ = 0. �

Theorem 10 explains the mechanism of ”dissolving” of the embedded eigenvalue
ω. The embedded eigenvalueω has moved from the real axis to a pointω(λ) on
the second (improperly called “unphysical”) Riemann sheetof the functionFλ(z).
There it remains the singularity of the analytically continued resolvent matrix ele-
ment(1|(hλ − z)−11), see Figure 1.

We now turn to the physically important concept of the life-time of the embedded
eigenvalue.

Theorem 11.There existsΛ′′ > 0 such that for|λ| < Λ′′ and all t ≥ 0

(1|e−ithλ1) = e−itω(λ) +O(λ2).

Proof. By Theorem 7 the spectrum ofhλ is purely absolutely continuous for0 <
|λ| < Λ. Hence, by Theorem 1,

dµλ(x) = dµλac(x) =
1

π
ImFλ(x+ i0) dx =

1

π
ImF+

λ (x) dx.
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2nd Riemann sheet

ω(λ)

ω

ρ′

physical Riemann sheet

Fig. 1.The resonance poleω(λ).

Let Λ′ andρ′ be the constants in Theorem 10,Λ′′ ≡ min(Λ′, Λ), and suppose that
0 < |λ| < Λ′′. We split the integral representation

(1|e−ithλ1) =

∫

X

e−itxdµλ(x), (42)

into three parts as
∫ ω−ρ′

e−

+

∫ ω+ρ′

ω−ρ′
+

∫ e+

ω+ρ′
.

Equ. (8) yields

ImF+
λ (x) = λ2 ImF+

R(x)

|ω − x− λ2F+
R(x)|2 ,

and so the first and the third term can be estimated asO(λ2). The second term can
be written as

I(t) ≡ 1

2πi

∫ ω+ρ′

ω−ρ′
e−itx

(

F+
λ (x) − F+

λ (x)
)

dx.

The functionz 7→ F+
λ (z) is meromorphic in an open set containingD(ω, ρ) with

only singularity atω(λ). We thus have

I(t) = −R(λ) e−itω(λ) +

∫

γ

e−itz
(

F+
λ (z) − F+

λ (z)
)

dz,

where the half-circleγ = {z | |z − ω| = ρ′, Im z ≤ 0} is positively oriented and
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R(λ) = Resz=ω(λ)F
+
λ (z).

By Equ. (41),R(λ) = Q(λ)/2πi is analytic for|λ| < Λ′′ and

R(λ) = −1 +O(λ2).

Equ. (8) yields that forz ∈ γ

F+
λ (z) =

1

ω − z
+O(λ2).

Sinceω is real, this estimate yields

F+
λ (z) − F+

λ (z) = O(λ2).

Combining the estimates we derive the statement.�

If a quantum mechanical system, described by the Hilbert spaceh and the Hamil-
tonianhλ, is initially in a pure state described by the vector1, then

P (t) = |(1|e−ithλ1)|2,
is the probability that the system will be in the same state attime t. Since the
spectrum ofhλ is purely absolutely continuous, by the Riemann-Lebesgue lemma
limt→∞ P (t) = 0. On physical grounds one often expects more, namely an approx-
imate relation

P (t) ∼ e−tΓ(λ), (43)

whereΓ(λ) is the so-called radiative life-time of the state1. The strict exponential
decayP (t) = O(e−at) is possible only ifX = R. Since in a typical physical sit-
uationX 6= R, the relation (43) is expected to hold on an intermediate time scale
(for times which are not ”too long” or ”too short”). Theorem 11 is a mathematically
rigorous version of these heuristic claims andΓ(λ) = −2 Imω(λ). The computation
of the radiative life-time is of paramount importance in quantum mechanics and the
reader may consult standard references [CDG, He, Mes] for additional information.

3.3 Complex deformations

In this subsection we will discuss Assumption (A4) and the perturbation theory of
the embedded eigenvalue in some specific situations.

Example 1.In this example we consider the caseX =]0,∞[.
Let 0 < δ < π/2 andA(δ) = {z ∈ C |Re z > 0, |Arg z| < δ}. We denote by

H2
d(δ) the class of all functionsf : X → K which have an analytic continuation to

the sectorA(δ) such that

‖f‖2
δ = sup

|θ|<δ

∫

X

‖f(eiθx)‖2
Kdx <∞.

The classH2
d(δ) is a Hilbert space. The functions inH2

d(δ) are sometimes called
dilation analytic.
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Proposition 8. Assume thatf ∈ H2
d(δ). Then Assumption(A4) holds in the follow-

ing stronger form:

1. The functionFR(z) has an analytic continuation to the regionC+ ∪ A(δ). We
denote the extended function byF+

R(z).
2. For 0 < δ′ < δ andǫ > 0 one has

sup
|z|>ǫ,z∈A(δ′)

|F+
R(z)| <∞.

Proof. The proposition follows from the representation

FR(z) =

∫

X

‖f(x)‖2
K

x− z
dx = eiθ

∫

X

(f(e−iθx)|f(eiθx))K

eiθx− z
dx, (44)

which holds forIm z > 0 and−δ < θ ≤ 0. This representation can be proven as
follows.

Let γ(θ) be the half-lineeiθ
R+. We wish to prove that forIm z > 0

∫

X

‖f(x)‖2
K

x− z
dx =

∫

γ(θ)

(f(w)|f(w))K

w − z
dw.

To justify the interchange of the line of integration, it suffices to show that

lim
n→∞

rn

∫ 0

θ

|(f(rne
−iϕ)|f(rne

iϕ))K|
|rneiϕ − z| dϕ = 0,

along some sequencern → ∞. This fact follows from the estimate
∫

X

[∫ 0

θ

x|(f(e−iϕx)|f(eiϕx))K|
|eiϕx− z| dϕ

]

dx ≤ Cz‖f‖2
δ .

�

Until the end of this example we assume thatf ∈ H2
d(δ) and that Assumption

(A2) holds (this is the case, for example, iff ′ ∈ H2
d(δ) and f(0) = 0). Then,

Theorems 10 and 11 hold in the following stronger forms.

Theorem 12. 1. The function

Fλ(z) = (1|(hλ − z)−11),

has a meromorphic continuation fromC+ to the regionC+ ∪ A(δ). We denote
this continuation byF+

λ (z).
2. Let0 < δ′ < δ be given. Then there isΛ′ > 0 such that for|λ| < Λ′ the only

singularity ofF+
λ (z) in A(δ′) is a simple pole atω(λ). The functionλ 7→ ω(λ)

is analytic for|λ| < Λ′ and

ω(λ) = ω + λ2a2 +O(λ4),

wherea2 = −FR(ω + i0). In particular, Im a2 = −π‖f(ω)‖2
K < 0.
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Theorem 13.There existsΛ′′ > 0 such that for|λ| < Λ′′ and all t ≥ 0,

(1|e−ithλ1) = e−itω(λ) +O(λ2t−1).

The proof of Theorem 13 starts with the identity

(1|e−ithλ1) = λ2

∫

X

e−itx‖f(x)‖2
K |F+

λ (x)|2 dx.

Given0 < δ′ < δ one can findΛ′′ such that for|λ| < Λ′′

(1|e−ithλ1) = e−itω(λ)+λ2

∫

e−iδ′R+

e−itw(f(w)|f(w))K F
+
λ (w)F+

λ (w) dw, (45)

and the integral on the right is easily estimated byO(t−1). We leave the details of
the proof as an exercise for the reader.

Example 2.We will use the structure of the previous example to illustrate the com-
plex deformation method in study of resonances. In this example we assume that
f ∈ H2

d(δ).
We define a group{u(θ) | θ ∈ R} of unitaries onh by

u(θ) : α⊕ f(x) 7→ α⊕ eθ/2f(eθx).

Note thathR(θ) ≡ u(−θ)hRu(θ) is the operator of multiplication bye−θx. Set
h0(θ) = ω ⊕ hR(θ), fθ(x) = u(−θ)f(x)u(θ) = f(e−θx), and

hλ(θ) = h0(θ) + λ ((1| · )fθ + (fθ| · )1) .

Clearly,hλ(θ) = u(−θ)hλu(θ).
We setS(δ) ≡ {z | |Im z| < δ} and note that the operatorh0(θ) and the function

fθ are defined for allθ ∈ S(δ). We definehλ(θ) for λ ∈ C andθ ∈ S(δ) by

hλ(θ) = h0(θ) + λ
(
(1| · )fθ + (fθ| · )1

)
.

The operatorshλ(θ) are called dilated Hamiltonians. The basic properties of this
family of operators are:

1. Dom (hλ(θ)) is independent ofλ andθ and equal toDom (h0).
2. For allφ ∈ Dom (h0) the functionC × S(δ) ∋ (λ, θ) 7→ hλ(θ)φ is analytic in

each variable separately.
A family of operators which satisfy (1) and (2) is called ananalytic family of
type Ain each variable separately.

3. If Im θ = Im θ′, then the operatorshλ(θ) andhλ(θ′) are unitarily equivalent,
namely

h0(θ
′) = u(−(θ′ − θ))h0(θ)u(θ

′ − θ).

4. spess(h0(θ)) = e−θR+ andspdisc(h0(θ)) = {ω}, see Figure 2.
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Fig. 2.The spectrum of the dilated Hamiltonianhλ(θ).

The important aspect of (4) is that whileω is an embedded eigenvalue ofh0, it
is an isolated eigenvalue ofh0(θ) as soon asIm θ < 0. Hence, ifIm θ < 0, then
the regular perturbation theory can be applied to the isolated eigenvalueω. Clearly,
for all λ, spess(hλ(θ)) = sp(h0(θ)) and one easily shows that forλ small enough
spdisc(hλ)(θ) = {ω̃(λ)} (see Figure 2). Moreover, if0 < ρ < min{ω, ω tan θ},
then for sufficiently smallλ,

ω̃(λ) =

∮

|z−ω|=ρ

z(1|(hλ(θ) − z)−11) dz

∮

|z−ω|=ρ

(1|(hλ(θ) − z)−11) dz

.

The reader should not be surprised that the eigenvalueω̃(λ) is precisely the pole
ω(λ) of F+

λ (z) discussed in Theorem 10 (in particular,ω̃(λ) is independent ofθ). To
clarify this connection, note thatu(θ)1 = 1. Thus, for realθ andIm z > 0,

Fλ(z) = (1|(hλ − z)−11) = (1|(hλ(θ) − z)−11).

On the other hand, the functionR ∋ θ 7→ (1|hλ(θ) − z)−11) has an analytic con-
tinuation to the strip−δ < Im θ < Im z. This analytic continuation is a constant
function, and so

F+
λ (z) = (1|(hλ(θ) − z)−11),

for −δ < Im θ < 0 andz ∈ C+ ∪ A(|Im θ|). This yields thatω(λ) = ω̃(λ).
The above set of ideas plays a very important role in mathematical physics. For

additional information and historical perspective we refer the reader to [AC, BC,
CFKS, Der2, Si2, RS4].

Example 3.In this example we consider the caseX = R.
Let δ > 0. We denote byH2

t (δ) the class of all functionsf : X → K which have
an analytic continuation to the stripS(δ) such that

‖f‖2
δ ≡ sup

|θ|<δ

∫

X

‖f(x+ iθ)‖2
K dx <∞.
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The classH2
t (δ) is a Hilbert space. The functions inH2

t (δ) are sometimes called
translation analytic.

Proposition 9. Assume thatf ∈ H2
t (δ). Then the functionFR(z) has an analytic

continuation to the half-plane{z ∈ C | Im z > −δ}.

The proposition follows from the relation

FR(z) =

∫

X

‖f(x)‖2
K

x− z
dx =

∫

X

(f(x− iθ)|f(x+ iθ))K

x+ iθ − z
dx, (46)

which holds forIm z > 0 and−δ < θ ≤ 0. The proof of (46) is similar to the proof
of (44).

Until the end of this example we will assume thatf ∈ H2
t (δ). A change of the

line of integration yields that the function

g(t) =

∫

R

e−itx‖f(x)‖2
K dx,

satisfies the estimate|g(t)| ≤ e−δ|t|‖f‖2
δ , and so Assumption (A2) holds. Moreover,

Theorems 10 and 11 hold in the following stronger forms.

Theorem 14. 1. The function

Fλ(z) = (1|(hλ − z)−11),

has a meromorphic continuation fromC+ to the half-plane

{z ∈ C | Im z > −δ}.

We denote this continuation byF+
λ (z).

2. Let0 < δ′ < δ be given. Then there isΛ′ > 0 such that for|λ| < Λ′ the only
singularity ofF+

λ (z) in {z ∈ C | Im z > −δ′} is a simple pole atω(λ). ω(λ) is
analytic for|λ| < Λ′ and

ω(λ) = ω + λ2a2 +O(λ4),

wherea2 = −FR(ω + i0). In particular, Im a2 = −π‖f(ω)‖2
K < 0.

Theorem 15.Let 0 < δ′ < δ be given. Then there existsΛ′′ > 0 such that for
|λ| < Λ′′ and all t ≥ 0

(1|e−ithλ1) = e−itω(λ) +O(λ2e−δ
′t).

In this example the survival probability has strict exponential decay.
We would like to mention two well-known models in mathematical physics for

which analogs of Theorems 14 and 15 holds. The first model is the Stark Hamil-
tonian which describes charged quantum particle moving under the influence of a
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constant electric field [Her]. The second model is the spin-boson system at positive
temperature [JP1, JP2].

In the translation analytic case, one can repeat the discussion of the previous
example with the analytic family of operators

hλ(θ) = ω ⊕ (x+ θ) + λ
(
(1| · )fθ + (fθ| · )1

)
,

wherefθ(x) ≡ f(x+ θ) (see Figure 3). Note that in this case

spess(hλ(θ)) = spess(h0(θ)) = R + i Im θ.

!!(�)�Im �
spess(h�(�))

Fig. 3.The spectrum of the translated Hamiltonianhλ(θ).

Example 4.Let us consider the model described in Example 2 of Subsection 3.1
wheref ∈ ℓ2(Z+) has bounded support. In this caseX =] − 1, 1[ and

FR(z) =

∫ 1

−1

√
1 − x2

x− z
Pf (x) dx, (47)

wherePf (x) is a polynomial inx. Since the integrand is analytic in the cut plane
C \ {x ∈ R | |x| ≥ 1}, we can deform the path of integration to any curveγ joining
−1 to 1 and lying entirely in the lower half-plane (see Figure 4). This shows that
the functionFR(z) has an analytic continuation fromC+ to the entire cut plane
C \ {x ∈ R | |x| ≥ 1}. Assumption (A4) holds in this case.
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Fig. 4.Deforming the integration contour in Equ. (47).

3.4 Weak coupling limit

The first computation of the radiative life-time in quantum mechanics goes back to
the seminal papers of Dirac [Di] and Wigner and Weisskopf [WW]. Consider the
survival probabilityP (t) and assume thatP (t) ∼ e−tΓ(λ) whereΓ(λ) = λ2Γ2 +
O(λ3) for λ small. To compute the first non-trivial coefficientΓ2, Dirac devised a
computational scheme called time-dependent perturbationtheory. Dirac’s formula
for Γ2 was calledGolden Rulein Fermi’s lectures [Fer], and since then this formula
is known asFermi’s Golden Rule.

One possible mathematically rigorous approach to time-dependent perturbation
theory is the so-called weak coupling (or Van Hove) limit. The idea is to study
P (t/λ2) asλ→ 0. Under very general conditions one can prove that

lim
λ→0

P (t/λ2) = e−tΓ2 ,

and thatΓ2 is given by Dirac’s formula (see [Da2, Da3]).
In this section we will discuss the weak coupling limit for the RWWA. We will

prove:

Theorem 16.Suppose that Assumptions(A1)-(A3) hold. Then

lim
λ→0

∣
∣
∣(1|e−ithλ/λ

2

1) − e−itω/λ2

eitFR(ω+i0)
∣
∣
∣ = 0,

for anyt ≥ 0. In particular,

lim
λ→0

|(1|e−ithλ/λ
2

1)|2 = e−2π‖f(ω)‖2
K
t.

Remark. If in addition Assumption (A4) holds, then Theorem 16 is an immediate
consequence of Theorem 11. The point is that the leading contribution to the life-time
can be rigorously derived under much weaker regularity assumptions.

Lemma 3. Suppose that Assumptions(A1)-(A3) hold. Letu be a bounded continu-
ous function onX. Then
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lim
λ→0

∣
∣
∣
∣
λ2

∫

X

e−itx/λ2

u(x)|Fλ(x+ i0)|2 dx− u(ω)

‖f(ω)‖2
K

e−it(ω/λ2−FR(ω+i0))

∣
∣
∣
∣
= 0,

for anyt ≥ 0.

Proof. We sethω(x) ≡ |ω − x− λ2FR(ω + i0)|−2 and

Iλ(t) ≡ λ2

∫

X

e−itx/λ2

u(x)|Fλ(x+ i0)|2 dx.

We writeu(x)|Fλ(x+ i0)|2 as

u(ω)hω(x) + (u(x) − u(ω))hω(x) + u(x)
(
|Fλ(x+ i0)|2 − hω(x)

)
,

and decomposeIλ(t) into three corresponding piecesIk,λ(t). The first piece is

I1,λ(t) = λ2 u(ω)

∫ e+

e−

e−itx/λ2

(ω − x− λ2ReFR(ω + i0))2 + (λ2ImFR(ω + i0))2
dx.

The change of variable

y =
x− ω + λ2ReFR(ω + i0)

λ2ImFR(ω + i0)
,

and the relationImFR(ω + i0) = π‖f(ω)‖2
K yield that

I1,λ(t) = e−it(ω/λ2−ReFR(ω+i0)) u(ω)

‖f(ω)‖2
K

1

π

∫ e+(λ)

e−(λ)

e−itImFR(ω+i0)y

y2 + 1
dy,

where

e±(λ) ≡ λ−2 e± − ω

π‖f(ω)‖2
K

+
ReFR(ω + i0)

π‖f(ω)‖2
K

→ ±∞,

asλ ↓ 0. From the formula

1

π

∫ ∞

−∞

e−itImFR(ω+i0)y

y2 + 1
dy = e−tImFR(ω+i0),

we obtain that

I1,λ(t) =
u(ω)

‖f(ω)‖2
K

e−it(ω/λ2−FR(ω+i0)) (1 + o(1)) , (48)

asλ ↓ 0.
Using the boundedness and continuity properties ofu andhω, one easily shows

that the second and the third piece can be estimated as

|I2,λ(t)| ≤ λ2

∫

X

∣
∣u(x) − u(ω)

∣
∣hω(x) dx,

|I3,λ(t)| ≤ λ2

∫

X

|u(x)|
∣
∣|Fλ(x+ i0)|2 − hω(x)

∣
∣ dx.
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Hence, they vanish asλ ↓ 0, and the result follows from Equ. (48).�

Proof of Theorem 16.LetΛ be as in Proposition 7. Recall that for0 < |λ| < Λ the
spectrum ofhλ is purely absolutely continuous. Hence, forλ small,

(1|e−ithλ/λ
2

1) =
1

π

∫

X

e−itx/λ2

ImFλ(x+ i0)dx

=
1

π

∫

X

e−itx/λ2 |Fλ(x+ i0)|2ImFR(x+ i0)dx

= λ2

∫

X

e−itx/λ2‖f(x)‖2
K |Fλ(x+ i0)|2dx,

where we used Equ. (19). This formula and Lemma 3 yield Theorem 16.�

The next result we wish to discuss concerns the weak couplinglimit for the form
of the emitted wave. LetpR be the orthogonal projection on the subspacehR of h.

Theorem 17.For anyg ∈ C0(R),

lim
λ↓0

(pRe−ithλ/λ
2

1|g(hR)pRe−ithλ/λ
2

1) = g(ω)
(

1 − e−2π‖f(ω)‖2
K
t
)

. (49)

Proof. Using the decomposition

pRg(hR)pR = (pRg(hR)pR − g(h0)) + (g(h0) − g(hλ)) + g(hλ)

= −g(ω)(1| · )1 + (g(h0) − g(hλ)) + g(hλ),

we can rewrite(pRe−ithλ/λ
2

1|g(hR)pRe−ithλ/λ
2

1) as a sum of three pieces. The
first piece is equal to

−g(ω)|(1|e−ithλ/λ
2

1)|2 = −g(ω)e−2π‖f(ω)‖2
K
t. (50)

Sinceλ 7→ hλ is continuous in the norm resolvent sense, we have

lim
λ→0

‖g(hλ) − g(h0)‖ = 0,

and the second piece can be estimated

(e−ithλ/λ
2

1|(g(h0) − g(hλ))e
−ithλ/λ

2

1) = o(1), (51)

asλ ↓ 0. The third piece satisfies

(e−ithλ/λ
2

1|g(hλ)e−ithλ/λ
2

1) = (1|g(hλ)1)

= (1|g(h0)1) + (1|(g(hλ) − g(h0))1)

= g(ω) + o(1),

(52)

asλ ↓ 0. Equ. (50), (51) and (52) yield the statement.�

Needless to say, Theorems 16 and 17 can be also derived from the general theory
of weak coupling limit developed in [Da2, Da3]. For additional information about
the weak coupling limit we refer the reader to [Da2, Da3, Der3, FGP, Haa, VH].
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3.5 Examples

In this subsection we describe the meromorphic continuation of

Fλ(z) = (1|(hλ − z)−11),

acrossspac(hλ) in some specific examples which allow for explicit computations.
SinceFλ(z) = F−λ(z), we need to consider onlyλ ≥ 0.

Example 1.LetX =]0,∞[ and

f(x) ≡ π−1/2(2x)1/4(1 + x2)−1/2.

Note thatf ∈ H2
d(δ) for 0 < δ < π/2 and sof is dilation analytic. In this specific

example, however, one can evaluateFR(z) directly and describe the full Riemann
surface ofFλ(z), thus going far beyond the results of Theorem 12.

Forz ∈ C \ [0,∞) we setw ≡ √−z, where the branch is chosen so thatRew >
0. Theniw ∈ C+ and the integral

FR(z) =
1

π

∫ ∞

0

√
2t

1 + t2
dt

t− z
=

√
2

π

∫ ∞

−∞

t2

1 + t4
dt

t2 + w2
,

is easily evaluated by closing the integration path in the upper half-plane and using
the residue method. We get

FR(z) =
1

w2 +
√

2w + 1
.

ThusFR is a meromorphic function ofw with two simple poles atw = e±3iπ/4. It
follows thatFR(z) is meromorphic on the two-sheeted Riemann surface of

√−z.
On the first (physical) sheet, whereRew > 0, it is of course analytic. On the second
sheet, whereRew < 0, it has two simple poles atz = ±i.

In term of the uniformizing variablew, we have

Fλ(z) =
w2 +

√
2w + 1

(w2 + ω)(w2 +
√

2w + 1) − λ2
.

Forλ > 0, this meromorphic function has 4 poles. These poles are analytic functions
of λ except at the collision points. Forλ small, the poles form two conjugate pairs,
one near±i

√
ω, the other neare±3iπ/4. Both pairs are on the second sheet. For

λ large, a pair of conjugated poles goes to infinity along the asymptoteRew =
−
√

2/4. A pair of real poles goes to±∞. In particular, one of them enters the first
sheet atλ =

√
ω andhλ has one negative eigenvalue forλ >

√
ω. Since

GR(x) =
1

π

∫ ∞

0

√
2

1 + t2
dt

(t− x)2
,

is finite forx < 0 and infinite forx ≥ 0, 0 is not an eigenvalue ofhλ for λ =
√
ω,

but a zero energy resonance. Note that the image of the asymptoteRew = −
√

2/4
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on the second sheet is the parabola{z = x+ iy |x = 2y2 − 1/8}. Thus, asλ→ ∞,
the poles ofFλ(z) move away from the spectrum. This means that there are no
resonances in the large coupling limit.

The qualitative trajectories of the poles (as functions ofλ for fixed values ofω)
are plotted in Figure 5.

�ip!
! = 1=2ip!�ip!e�3i�=4e3i�=4 0 < ! < 1=2ip!

�ip!
1=2 < ! < 1ip!

�ip!
! > 1ip!

Fig. 5. Trajectories of the poles ofFλ(z) in w-space for various values ofω in Example 1.
Notice the simultaneous collision of the two pairs of conjugate poles whenω = λ = 1/2. The
second Riemann sheet is shaded.

Example 2.LetX = R and

f(x) ≡ π−1/2(1 + x2)−1/2.

Sincef ∈ H2
t (δ) for 0 < δ < 1, the functionf is translation analytic. Here again

we can compute explicitlyFR(z). Forz ∈ C+, a simple residue calculation leads to
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FR(z) =
1

π

∫ ∞

−∞

1

1 + t2
dt

t− z
= − 1

z + i
.

Hence,

Fλ(z) =
z + i

λ2 − (z + i)(z − ω)
,

has a meromorphic continuation across the real axis to the entire complex plane. It
has two poles given by the two branches of

ω(λ) =
ω − i +

√

(ω + i)2 + 4λ2

2
,

which are analytic except at the collision pointω = 0, λ = 1/2. For smallλ, one of
these poles is nearω and the other is near−i. Since

ω(λ) = − i

2
+
(ω

2
± λ

)

+O(1/λ),

asλ→ ∞, hλ has no large coupling resonances. The resonance curveω(λ) is plotted
in Figure 6.

Clearly,sp(hλ) = R for all ω andλ. Note that for allx ∈ R,GR(x) = ∞ and

ImFλ(x+ i0) =
λ2

(x− ω)2 + (λ2 − x(x− ω))2
.

Hence, the operatorhλ has purely absolutely continuous spectrum for allω and all
λ 6= 0. ! > 0!�i

spa
(h�) ! = 0!�i
Fig. 6.The poles ofFλ(z) for Example 2.

Example 3.LetX =] − 1, 1[ and

f(x) ≡
√

2

π
(1 − x2)1/4.

(Recall Example 2 in Subsection 3.1 and Example 4 in Subsection 3.3 –hR andhR
areℓ2(Z+) and the discrete Laplacian in the energy representation andf = δ#1 .) In
Subsection 2.9 we have shown that forz ∈ C \ [−1, 1],
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FR(z) =
2

π

∫ 1

−1

√
1 − t2

t− z
dt = 2

ξ − 1

ξ + 1
, (53)

where

ξ =

√

z − 1

z + 1
.

The principal branch of the square rootRe ξ > 0 corresponds to the first (physical)

z w
2nd sheet

Fig. 7.Mapping the cut planeC \ [−1, 1] to the exterior of the unit disk

sheet of the Riemann surfaceR of FR(z). The branchRe ξ < 0 corresponds to the
second sheet ofR. In particular,

FR(x+ i0) = 2(−x+ i
√

1 − x2).

For an obvious reason we will call this particular RWWA the semi-circle model.
To discuss the analytic structure of the Borel transformFλ(z), it is convenient to
introduce the uniformizing variable

w ≡ − 2

FR(z)
=

1 + ξ

1 − ξ
,

which maps the Riemann surfaceR to C \ {0}. Note that the first sheet ofR is
mapped on the exterior of the unit disk and that the second sheet is mapped on the
punctured disk{z ∈ C | 0 < |z| < 1} (see Figure 7). The inverse of this map is

z =
1

2

(

w +
1

w

)

.
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For z ∈ C \ [−1, 1] the functionFλ(z) is given by

Fλ(z) =
−2w

w2 − 2ωw + 1 − 4λ2
,

and thus has a meromorphic continuation to the entire Riemann surfaceR. The res-
onance poles in thew-plane are computed by solving

w2 − 2ωw + 1 − 4λ2 = 0,

and are given by the two-valued analytic function

w = ω +
√

4λ2 + ω2 − 1.

We will describe the motion of the poles in the caseω ≥ 0 (the caseω ≤ 0 is
completely symmetric). For0 < λ <

√
1 − ω2/2 there are two conjugate poles

on the second sheet which, in thew-plane, move towards the pointω on a vertical
line. After their collision atλ =

√
1 − ω2/2, they turn into a pair of real poles

moving towards±∞ (see Figure 8). The pole moving to the right reachesw = 1 at
λ =

√

(1 − ω)/2 and enters the first sheet ofR. We conclude thathλ has a positive
eigenvalue

ω+(λ) =
1

2

(

ω +
√

4λ2 + ω2 − 1 +
1

ω +
√

4λ2 + ω2 − 1

)

,

for λ >
√

(1 − ω)/2. The pole moving to the left reachesw = 0 atλ = 1/2. This
means that this pole reachesz = ∞ on the second sheet ofR. For λ > 1/2, the
pole continues its route towardsw = −1, i.e., it comes back fromz = ∞ towards
z = −1, still on the second sheet ofR. At λ =

√

(1 + ω)/2, it reachesw = −1 and
enters the first sheet. We conclude thathλ has a negative eigenvalue

ω−(λ) =
1

2

(

ω −
√

4λ2 + ω2 − 1 +
1

ω −
√

4λ2 + ω2 − 1

)

,

for λ >
√

(1 + ω)/2. The trajectory of these poles in thez cut-plane is shown on
Figure 9. For clarity, only one pole of the conjugate pair is displayed.

Example 4.In all the previous examples, there were no resonances in thelarge
coupling regime,i.e., the second sheet poles ofFλ kept away from the continu-
ous spectrum asλ → ∞. This fact can be understood as follows. If a resonance
ω(λ) approaches the real axis asλ → ∞, then it follows from Equ. (8) that
ImFR(ω(λ)) = o(λ−2). Since under Assumptions (A1) and (A2)FR is continu-
ous onC+, we conclude that iflimλ→∞ ω(λ) = ω ∈ R, thenImFR(ω + i0) = 0.
Since‖f(x)‖K is also continuous onX, if ω ∈ X, then we must havef(ω) = 0.
Thus the only possible locations of large coupling resonances are the zeros off in
X. We finish this subsection with an example where such large coupling resonances
exist.
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Fig. 8.The trajectories of the poles ofFλ in thew-plane. The second sheet is shaded.z 1�1 ! (! + !�1)=2
Fig. 9.The trajectories of the poles ofFλ in thez-plane. Dashed lines are on the second sheet.

Let againX =] − 1, 1[ and set

f(x) ≡
√

1

π
x(1 − x2)1/4.

The Borel transform

FR(z) =
1

π

∫ 1

−1

x2
√

1 − x2

x− z
dx,

is easily evaluated by a residue calculation and the change of variable

x = (u+ u−1)/2.

Using the same uniformizing variablew as in Example 3, we get

FR(z) = −1

4

(

1 +
1

w2

)
1

w
, (54)

and
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Fλ(z) =
−4w3

2w4 − 4ωw3 + (2 − λ2)w2 − λ2
. (55)

We shall again restrict ourselves to the case0 < ω < 1. At λ = 0 the denominator of
(55) has a double zero atw = 0 and a pair of conjugated zeros atω± i

√
1 − ω2. Asλ

increases, the double zero at0 splits into a pair of real zeros going to±∞. The right
zero reaches1 and enters the first sheet atλ =

√

2(1 − ω). At λ =
√

2(1 + ω),
the left zero reaches−1 and also enters the first sheet. The pair of conjugated zeros
move from their original positions towards±i (of course, they remain within the unit
disk). For largeλ, they behave like

w = ±i +
2ω

λ2
− 2ω(2 ± 5iω)

λ4
+O(λ−6).

Thus, in thez plane,Fλ has two real poles emerging from±∞ on the second sheet
and traveling towards±1. The right pole reaches1 atλ =

√

2(1 − ω) and becomes
an eigenvalue ofhλ which returns to+∞ asλ further increases. The left pole reaches
−1 atλ =

√

2(1 + ω), becomes an eigenvalue ofhλ, and further proceeds towards
−∞. On the other hand, the eigenvalueω of h0 turns into a pair of conjugated poles
on the second sheet which, asλ→ ∞, tend towards0 as

ω(λ) =
2ω

λ2
− 4ω(1 ± 2iω)

λ4
+O(λ−6),

see Figure 9. We conclude thathλ has a large coupling resonance approaching0 as
λ→ ∞. z 1�1 !
Fig. 10. The trajectories of the poles ofFλ in the z-plane. Dashed lines are on the second
sheet.

4 Fermionic quantization

4.1 Basic notions of fermionic quantization

This subsection is a telegraphic review of the fermionic quantization. For additional
information and references the reader may consult Section 5in [AJPP1].

Let h be a Hilbert space. We denote byΓ(h) the fermionic (antisymmetric) Fock
space overh, and byΓn(h) then-particle sector inh.Φh denotes the vacuum inΓ(h)
anda(f), a∗(f) the annihilation and creation operators associated tof ∈ h. In the
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sequela#(f) represents eithera(f) ora∗(f). Recall that‖a#(f)‖ = ‖f‖. The CAR
algebra overh, CAR(h), is theC∗-algebra of bounded operators onΓ(h) generated
by {a#(f) | f ∈ h}.

Let u be a unitary operator onh. Its second quantization

Γ(u)|Γn(h) ≡ u⊗ · · · ⊗ u = u⊗n,

defines a unitary operator onΓ(h) which satisfies

Γ(u)a#(f) = a#(uf)Γ(u).

Leth be a self-adjoint operator onh. The second quantization ofeith is a strongly
continuous group of unitary operators onΓ(h). The generator of this group is denoted
by dΓ(h),

Γ(eith) = eitdΓ(h).

dΓ(h) is essentially self-adjoint onΓ(Domh), whereDomh is equipped with the
graph norm, and one has

dΓ(h)|Γn(Domh) =
∑n
k=1 I ⊗ · · · ⊗ I

︸ ︷︷ ︸
⊗h⊗ I ⊗ · · · ⊗ I

︸ ︷︷ ︸
.

k − 1 n− k

The maps

τ t(a#(f)) = eitdΓ(h)a#(f)e−itdΓ(h) = a#(eithf),

uniquely extend to a groupτ of ∗-automorphisms ofCAR(h). τ is often called the
group of Bogoliubov automorphisms induced byh. The groupτ is norm continuous
and the pair(CAR(h), τ) is aC∗-dynamical system. We will call it a CAR dynamical
system. We will also call the pair(CAR(h), τ) the fermionic quantization of(h, h).

If two pairs (h1, h1) and(h2, h2) are unitarily equivalent, that is, if there exists
a unitaryu : h1 → h2 such thatuh1u

−1 = h2, then the fermionic quantizations
(CAR(h1), τ1) and(CAR(h2), τ2) are isomorphic—the mapσ(a#(f)) = a#(uf)
extends uniquely to a∗-isomorphism such thatσ ◦ τ t1 = τ t2 ◦ σ.

4.2 Fermionic quantization of the WWA

Lethλ be a WWA onh = C⊕hR. Its fermionic quantization is the pair(CAR(h), τλ),
where

τ tλ(a
#(φ)) = eitdΓ(hλ)a#(φ)e−itdΓ(hλ) = a#(eithλφ).

We will refer to (CAR(h), τλ) as theSimple Electronic Black Box(SEBB) model.
This model has been discussed in the recent lecture notes [AJPP1]. The SEBB model
is the simplest non-trivial example of the Electronic BlackBox model introduced and
studied in [AJPP2].

The SEBB model is also the simplest non-trivial example of anopen quantum
system. Set
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τ tS(a#(α)) = a#(eitωα), τ tR(a#(g)) = a#(eithRg).

The CAR dynamical systems(CAR(C), τS) and(CAR(hR), τR) are naturally iden-
tified with sub-systems of the non-interacting SEBB(CAR(h), τ0). The system
(CAR(C), τS) is a two-level quantum dot without internal structure. The system
(CAR(hR), τR) is a free Fermi gas reservoir. Hence,(CAR(hλ), τλ) describes the
interaction of a two-level quantum system with a free Fermi gas reservoir.

In the sequel we denoteHλ ≡ dΓ(hλ),HS ≡ dΓ(ω),HR ≡ dΓ(hR), and

V ≡ dΓ(v) = a∗(f)a(1) + a∗(1)a(f).

Clearly,
Hλ = H0 + λV.

4.3 Spectral theory

The vacuum ofΓ(h) is always an eigenvector ofHλ with eigenvalue zero. The rest
of the spectrum ofHλ is completely determined by the spectrum ofhλ and one
may use the results of Sections 2 and 3.2 to characterize the spectrum ofHλ. We
mention several obvious facts. If the spectrum ofhλ is purely absolutely continuous,
then the spectrum ofHλ is also purely absolutely continuous except for a simple
eigenvalue at zero.Hλ has no singular continuous spectrum iffhλ has no singular
continuous spectrum. Let{ei}i∈I be the eigenvalues ofhλ, repeated according to
their multiplicities. The eigenvalues ofHλ are given by

spp(Hλ) =

{
∑

i∈I

niei

∣
∣
∣
∣
∣
ni ∈ {0, 1},

∑

i∈I

ni <∞
}

∪ {0}.

Until the end of this subsection we will discuss the fermionic quantization of the
Radiating Wigner-Weisskopf Atom introduced in Section 3.2. The point spectrum of
H0 consists of two simple eigenvalues{0, ω}. The corresponding normalized eigen-
functions are

Ψn = a(1)nΦh, n = 0, 1.

Apart from these simple eigenvalues, the spectrum ofH0 is purely absolutely con-
tinuous andspac(H0) is equal to the closure of the set

{

e+

n∑

i=1

xi |xi ∈ X, e ∈ {0, ω}, n ≥ 1

}

.

Let Λ be as in Theorem 7. Then for0 < |λ| < Λ the spectrum ofHλ is purely
absolutely continuous except for a simple eigenvalue0.

Note that

(Ψ1|e−itHλΨ1) = (a(1)Φh|e−itHλa(1)Φh)

= (a(1)Φh|a(e−ithλ)Φh) = (1|e−ithλ1).
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Similarly,
(Ψ1|(Hλ − z)−1Ψ1) = (1|(hλ − z)−11).

Hence, one may use directly the results (and examples) of Section 3 to describe the
asymptotic of(Ψ1|e−itHλΨ1) and the meromorphic continuation of

C+ ∋ z 7→ (Ψ1|(Hλ − z)−1Ψ1). (56)

4.4 Scattering theory

Let hλ be a WWA onh = C ⊕ hR. The relation

τ−t0 ◦ τ tλ(a#(φ)) = a#(e−ith0eithλφ),

yields that forφ ∈ hac(hλ) the limit

lim
t→∞

τ−t0 ◦ τ tλ(a#(φ)) = a#(Ω−
λ φ),

exists in the norm topology ofCAR(h). Denote

τλ,ac ≡ τλ|CAR(hac(hλ)), τR,ac ≡ τR|CAR(hac(hR)).

By the intertwining property (25) of the wave operatorΩ−
λ , the map

σ+
λ (a#(φ)) ≡ a#(Ω−

λ φ),

satisfiesσ+
λ ◦ τ tλ,ac = τ tR,ac ◦ σ+

λ . Hence,σ+
λ is a∗-isomorphism between the CAR

dynamical systems(CAR(hac(hλ)), τλ,ac) and (CAR(hac(hR)), τR,ac). This iso-
morphism is the algebraic analog of the wave operator in Hilbert space scattering
theory and is often called the Møller isomorphism.

5 Quantum statistical mechanics of the SEBB model

5.1 Quasi-free states

This subsection is a direct continuation of Subsection 4.1.Let h be a given Hilbert
space andCAR(h) the CAR algebra overh. A positive linear functionalη :
CAR(h) → C is called astateif η(I) = 1. A physical systemP is described by
the CAR dynamical system(CAR(h), τ) if its physical observables can be identi-
fied with elements ofCAR(h) and if their time evolution is specified by the groupτ .
The physical states ofP are specified by states onCAR(h). If P is initially in a state
described byη andA ∈ CAR(h) is a given observable, then the expectation value
of A at timet is η(τ t(A)). This is the usual framework of the algebraic quantum sta-
tistical mechanics in the Heisenberg picture. In the Schrödinger picture one evolves
the states and keeps the observables fixed,i.e., if η is an initial state, then the state
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at timet is η ◦ τ t. A stateη is calledτ -invariant (or stationary state, steady state) if
η ◦ τ t = η for all t.

Let T be a self-adjoint operator onh such that0 ≤ T ≤ I. The map

ηT (a∗(fn) · · · a∗(f1)a(g1) · · · a(gm)) = δn,mdet{(gi|Tfj)} (57)

uniquely extends to a stateηT onCAR(h). This state is usually called the quasi-free
gauge-invariant state generated byT . The stateηT is completely determined by its
two point function

ηT (a∗(f)a(g)) = (g|Tf).

Note that ifA ≡∑j fj(gj | · ) is a finite rank operator onh, then

dΓ(A) =
∑

j

a∗(fj)a(gj),

and
ηT (dΓ(A)) = Tr (TA) =

∑

j

(gj |Tfj). (58)

Let (CAR(h), τ) be the fermionic quantization of(h, h). The quasi-free state
ηT is τ -invariant iff eithT = T eith for all t ∈ R. In particular, the quasi-free state
generated byT = ̺(h), where̺ is a positive bounded function on the spectrum of
h, is τ -invariant. The function̺ is the energy density of this quasi-free state. Let
β > 0 andµ ∈ R. Of particular importance in quantum statistical mechanics is the
quasi-free state associated withT = ̺βµ(h), where the energy density̺βµ is given
by the Fermi-Dirac distribution

̺βµ(ε) ≡
1

eβ(ε−µ) + 1
. (59)

We denote this state byηβµ. The pair(CAR(h), τ) and the stateηβµ describe free
Fermi gas in thermal equilibrium at inverse temperatureβ and chemical potentialµ.

5.2 Non-equilibrium stationary states

In this and the next subsection we assume thathλ has a purely absolutely continuous
spectrum. We make this assumption in order to ensure that thesystem will evolve
towards a stationary state. This assumption will be partially relaxed in Subsection
5.4, where we discuss the effect of the eigenvalues ofhλ. We do not make any as-
sumptions on the spectrum ofhR.

Let ηT be a quasi-free state onCAR(C ⊕ hR) generated byT = α ⊕ TR.
We denote byηTR

the quasi-free state onCAR(hR) generated byTR. We assume
thatηTR

is τR-invariant and denote byTR,ac the restriction ofTR to the subspace
hac(hR).

Let φ1, · · · , φn ∈ h and

A = a#(φ1) · · · a#(φn). (60)



Mathematical Theory of the Wigner-Weisskopf Atom 51

SinceηT is τ0-invariant,

ηT (τ tλ(A))) = ηT (τ−t0 ◦ τ tλ(A))

= ηT (a#(e−ith0eithλφ1) · · · a#(e−ith0eithλφn)).

Hence
lim
t→∞

ηT (τ tλ(A)) = ηT (a#(Ω−
λ φ1) · · · a#(Ω−

λ φn)).

Since the set of observables of the form (60) is dense inh, we conclude that for all
A ∈ CAR(h) the limit

η+
λ (A) = lim

t→∞
ηT (τ tλ(A)),

exists and defines a stateη+
λ onCAR(h). Note thatη+

λ is the quasi-free state gener-
ated byT+

λ ≡ (Ω−
λ )∗TΩ−

λ . SinceRanΩ−
λ = hac(h0) = hac(hR), we have

T+
λ = (Ω−

λ )∗TR,acΩ
−
λ , (61)

and so
η+
λ = ηTR,ac

◦ σ+
λ ,

whereσ+
λ is the Møller isomorphism introduced in Subsection 4.4. Obviously,η+

λ is
independent of the choice ofα and of the restriction ofTR to hsing(hR). Since

eithλT+
λ e−ithλ = (Ω−

λ )∗eithRTR,ace
−ithRΩ−

λ = T+
λ ,

η+
λ is τλ-invariant.

The stateη+
λ is called thenon-equilibrium stationary state(NESS) of the CAR

dynamical system(CAR(h), τλ) associated to the initial stateηT . Note that ifA ≡
∑

j φj(ψj | · ), then, according to Equ. (58),

η+
λ (dΓ(A)) = Tr (TΩ−

λ AΩ
−
λ

∗
) =

∑

j

(Ω−
λ ψj |TΩ−

λ φj). (62)

By passing to the GNS representation associated toηT one can prove the follow-
ing more general result. LetN be the set of states onCAR(h) which are normal with
respect toηT (the setN does not depend on the choice ofα). Then for anyη ∈ N
andA ∈ CAR(h),

lim
t→∞

η(τ tλ(A)) = η+
λ (A).

If TR = ̺(hR) for some bounded function̺ on the spectrum ofhR, then the
intertwining property of the wave operator implies thatT+

λ = ̺(hλ) and hence
η+
λ = η̺(hλ). In particular, if the reservoir is initially in thermal equilibrium at

inverse temperatureβ > 0 and chemical potentialµ ∈ R, thenη+
λ is the quasi-

free state associated to(eβ(hλ−µ) + 1)−1, which is the thermal equilibrium state of
(CAR(h), τλ) at the inverse temperatureβ and chemical potentialµ. This type of
phenomenon, often called return to equilibrium, is an important part of the zeroth
law of thermodynamics and plays a fundamental role in foundations of statistical
mechanics.
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5.3 Non-equilibrium thermodynamics

In this subsection we again assume thathλ has purely absolutely continuous spec-
trum. Concerning the reservoirR, we assume thathR is multiplication byx on
hR = L2(X,dµ;K), whereK is a separable Hilbert space. The internal structure
of R is further specified by an orthogonal decompositionK = ⊕Mk=1Kk. We set
hRk

= L2(X,dµ;Kk) and denote byhRk
the operator of multiplication byx on

hRk
. Thus, we can write

hR =

M⊕

k=1

hRk
, hR =

M⊕

k=1

hRk
. (63)

We interpret (63) as a decomposition of the reservoirR into M independent
subreservoirsR1, . . . ,RM .

According to (63), we writef = ⊕Mk=1fk and we split the interactionv asv =
∑M
k=1 vk, where

vk = (1| · )fk + (fk| · )1.
In the sequel we assume thatf ∈ DomhR. The projection onto the subspacehRk

is
denoted by1Rk

. Set

fk ≡ − d

dt
eithλhRk

e−ithλ
∣
∣
t=0

= −i[hλ, hRk
] = −i[hS +

∑

j

(
hRj

+ λvj
)
, hRk

]

= λi[hRk
, vk]

= λi ((1| · )hRk
fk − (hRk

fk| · )1) ,

(64)

and

jk ≡ − d

dt
eithλ1Rk

e−ithλ
∣
∣
t=0

= −i[hλ, 1Rk
] = −i[hS +

∑

j

(
hRj

+ λvj
)
, 1Rk

]

= λi[1Rk
, vk]

= λi ((1| · )fk − (fk| · )1) .

(65)

The observables describing the heat and particle fluxes out of the k-th subreservoir
are

Fk ≡ dΓ(fk) = λi(a∗(hRk
fk)a(1) − a∗(1)a(hRk

fk)),

Jk ≡ dΓ(jk) = λi(a∗(fk)a(1) − a∗(1)a(fk)).

We assume that the initial state of the coupled systemS + R is the quasi-free
state associated toT ≡ α⊕ TR, where
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TR =

M⊕

k=1

TRk
=

M⊕

k=1

̺k(hRk
),

and̺k is a bounded positive measurable function onX.
Letη+

λ be the NESS of(CAR(h), τλ) associated to the initial stateηT . According
to Equ. (61) and (58), the steady state heat current out of thesubreservoirRk is

η+
λ (Fk) = Tr (T+

λ fk) = Tr (TRΩ
−
λ fk(Ω

−
λ )∗)

=

M∑

j=1

Tr (̺j(hRj
)1Rj

Ω−
λ fk(Ω

−
λ )∗1Rj

).

Using Equ. (64) we can rewrite this expression as

η+
λ (Fk) = 2λ

M∑

j=1

Im (1Rj
Ω−
λ hRk

fk|̺j(hRj
)1Rj

Ω−
λ 1).

Equ. (28) yields the relations

(̺j(hRj
)1Rj

Ω−
λ 1)(x) = −λ̺j(x)Fλ(x− i0)fj(x),

(1Rj
Ω−
λ hRk

fk)(x) =
(
δkj x+ λ2Fλ(x+ i0)Hk(x+ i0)

)
fj(x),

where we have set

Hk(z) ≡
∫

X

x‖fk(x)‖2
Kk

x− z
dµ(x).

Since RanΩ−
λ = hac(hR), it follows that (1Rj

Ω−
λ hRk

fk|̺j(hRj
)1Rj

Ω−
λ 1) is

equal to

λ

∫

X

(
δkjxFλ(x+ i0) − λ2|Fλ(x+ i0)|2Hk(x+ i0)

)
‖fj(x)‖2

Kj
̺j(x) dµac(x).

From Equ. (18) we deduce that

ImHk(x+ i0) = πx‖fk(x)‖2
Kk

dµac

dx
(x),

for Lebesgue a.e.x ∈ X. Equ. (19) yields

ImFλ(x+ i0) = πλ2|Fλ(x+ i0)|2‖f(x)‖2
K

dµac

dx
(x).

It follows thatIm (1Rj
Ω−
λ hRk

fk|̺j(hRj
)1Rj

Ω−
λ 1) is equal to

λ3π

∫

X

(
δkj‖f(x)‖2

K − ‖fk(x)‖2
Kk

)
‖fj(x)‖2

Kj
|Fλ(x+i0)|2 x̺j(x)

(
dµac

dx
(x)

)2

dx.

Finally, using the fact that‖f(x)‖2
K =

∑

j ‖fj(x)‖2
Kj

, we obtain
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η+
λ (Fk) =

M∑

j=1

∫

X

x(̺k(x) − ̺j(x))Dkj(x)
dx

2π
, (66)

where

Dkj(x) ≡ 4π2λ4‖fk(x)‖2
hk
‖fj(x)‖2

hj
|Fλ(x+ i0)|2

(
dµac

dx
(x)

)2

. (67)

Proceeding in a completely similar way we obtain the following formula for the
steady particle current

η+
λ (Jk) =

M∑

j=1

∫

X

(̺k(x) − ̺j(x))Dkj(x)
dx

2π
. (68)

There are several ways to interpret the quantityDkj in Equ. (67). In spectral
theoretic terms, we can invoke Equ. (18) and (19) to write

Dkj = 4π2λ2 dµλac
dµR,ac

dµRk,ac

dx

dµRj ,ac

dx
,

wheredµRk
denotes the spectral measure ofhRk

for fk. It is also possible to relate
Dkj to theS-matrix associated toΩ±

λ . According to the decomposition (63), this
S-matrix can be written as

(1Rk
Sψ)(x) =

M∑

j=1

Skj(x)(1Rj
ψ)(x) ≡ (1Rk

ψ)(x) +

M∑

j=1

tkj(x)(1Rj
ψ)(x).

Equ. (29) yields that thet-matrix defined by this relation can be expressed as

tkj(x) = 2πiλ2 dµR,ac

dx
(x)Fλ(x+ i0)fk(x)(fj(x)| · )Kj

,

and we derive that

Dkj(x) = Tr Kj

(

tkj(x)
∗tkj(x)

)

. (69)

Equ. (66), (68) together with (69) are the well-known Büttiker-Landauer formulas
for the steady currents.

It immediately follows from Equ. (66) that

M∑

k=1

η+
λ (Fk) = 0,

which is the first law of thermodynamics (conservation of energy). Similarly, particle
number conservation

M∑

k=1

η+
λ (Jk) = 0,
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follows from Equ. (68).
To describe the entropy production of the system, assume that thek-th subreser-

voir is initially in thermal equilibrium at inverse temperatureβk > 0 and chemical
potentialµk ∈ R. This means that

̺k(x) = F (Zk(x)),

whereF (t) ≡ (et+1)−1 andZk(x) ≡ βk(x−µk). The entropy production observ-
able is then given by

σ ≡ −
M∑

k=1

βk(Fk − µkJk).

The entropy production rate of the NESSη+
λ is

Ep(η+
λ ) = η+

λ (σ) =
1

2

M∑

k,j=1

∫

X

(Zj − Zk)(F (Zk) − F (Zj))Dkj
dx

2π
. (70)

Since the functionF is monotone decreasing,Ep(η+
λ ) is clearly non-negative. This

is the second law of thermodynamics (increase of entropy). Note that in the case of
two subreservoirs withµ1 = µ2 the positivity of entropy production implies that the
heat flows from the hot to the cold reservoir. Fork 6= j let

Fkj ≡ {x ∈ X | ‖fk(x)‖hk
‖fj(x)‖hj

> 0}.

The subreservoirsRk andRj areeffectively coupledif µac(Fkj) > 0. The SEBB
model is thermodynamically trivial unless some of the subreservoirs are effectively
coupled. IfRk andRj are effectively coupled, thenEp(η+

λ ) > 0 unlessβk = βj and
µk = µj , that is, unless the reservoirsRk andRj are in the same thermodynamical
state.

5.4 The effect of eigenvalues

In our study of NESS and thermodynamics in Subsections 5.2 and 5.3 we have made
the assumption thathλ has purely absolutely continuous spectrum. IfX 6= R, then
this assumption does not hold forλ large. For example, ifX =]0,∞[, ω > 0, and

λ2 > ω

(∫ ∞

0

‖f(x)‖2
h x

−1dµ(x)

)−1

,

thenhλ will have an eigenvalue in] −∞, 0[. In particular, if
∫ ∞

0

‖f(x)‖2
h x

−1dµ(x) = ∞,

thenhλ will have a negative eigenvalue for allλ 6= 0. Hence, the assumption that
hλ has empty point spectrum is very restrictive, and it is important to understand
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the NESS and thermodynamics of the SEBB model in the case where hλ has some
eigenvalues. Of course, we are concerned only with point spectrum ofhλ restricted
to the cyclic subspace generated by the vector1.

Assume thatλ is such thatsppp(hλ) 6= ∅ andspsc(hλ) = ∅. We make no assump-
tion on the structure ofsppp(hλ); in particular this point spectrum may be dense in
some interval. We also make no assumptions on the spectrum ofhR.

For notational simplicity, in this subsection we writehac for hac(hλ), 1ac for
1ac(hλ), etc.

Let T andηT be as in Subsection 5.2 and letφ, ψ ∈ h = C ⊕ hR. Then,

ηT (τ tλ(a
∗(φ)a(ψ))) = (eithλψ|T eithλφ) =

3∑

j=1

Nj(e
ithλψ, eithλφ),

where we have set
N1(ψ, φ) ≡ (1acψ|T1acφ),

N2(ψ, φ) ≡ 2Re (1ppψ|T1acφ),

N3(ψ, φ) ≡ (1ppψ|T1ppφ).

Sincee−ith0T = T e−ith0 , we have

N1(e
ithλψ, eithλφ) = (e−ith0eithλ1acψ|T e−ith0eithλ1acφ),

and so
lim
t→∞

N1(e
ithλψ, eithλφ) = (Ω−

λ ψ|TΩ−
λ φ).

Sinceh is separable, there exists a sequencePn of finite rank projections commuting
with hλ such thats − lim Pn = 1pp. The Riemann-Lebesgue lemma yields that for
all n

lim
t→∞

‖PnT eithλ1acφ‖ = 0.

The relation

N2(e
ithλψ|eithλφ) = (eithλ1ppψ|PnT eithλ1acφ)

+ (eithλ(I − Pn)1ppψ|T eithλ1acφ),

yields that
lim
t→∞

N2(e
ithλψ, eithλφ) = 0.

SinceN3(e
ithλψ, eithλφ) is either a periodic or a quasi-periodic function oft,

the limit
lim
t→∞

ηT (τ tλ(a
∗(φ)a(ψ))),

does not exist in general. The resolution of this difficulty is well known—to extract
the steady part of a time evolution in the presence of a (quasi-)periodic component
one needs to average over time. Indeed, one easily shows that
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lim
t→∞

1

t

∫ t

0

N3(e
ishλψ, eishλφ)ds =

∑

e∈spp(hλ)

(Peψ|TPeφ),

wherePe denotes the spectral projection ofhλ associated with the eigenvaluee.
Hence,

lim
t→∞

1

t

∫ t

0

ηT (τsλ(a
∗(φ)a(ψ)))ds =

∑

e∈spp(hλ)

(Peψ|TPeφ) + (Ω−
λ ψ|TΩ−

λ φ).

In a similar way one concludes that for any observable of the form

A = a∗(φn) · · · a∗(φ1)a(ψ1) · · · a(ψm), (71)

the limit

lim
t→∞

1

t

∫ t

0

ηT (τsλ(A))ds = δn,m lim
t→∞

1

t

∫ t

0

det
{
(eishλψi|T eishλφj)}ds,

exists and is equal to the limit

lim
t→∞

1

t

∫ t

0

det
{
(eishλ1ppψi|T eishλ1ppφj) + (Ω−

λ 1acψi|TΩ−
λ 1acφj)

}
ds, (72)

see [Kat] Section VI.5 for basic results about quasi-periodic function onR. Since the
linear span of the set of observables of the form (71) is densein h, we conclude that
for all A ∈ CAR(h) the limit

η+
λ (A) = lim

t→∞

1

t

∫ t

0

ηT (τsλ(A))ds,

exists and defines a stateη+
λ on CAR(h). By the construction, this state isτλ-

invariant.η+
λ is the NESS of(CAR(h), τλ) associated to the initial stateηT . Note

that this definition reduces to the previous if the point spectrum ofhλ is empty.
To further elucidate the structure ofη+

λ we will make use of the decomposition

h = hac ⊕ hpp. (73)

The subspaceshac andhpp are invariant underhλ and we denote the restrictions
of τλ to CAR(hac) andCAR(hpp) by τλ,ac andτλ,pp. We also denote byη+

λ,ac and

η+
λ,pp the restrictions ofη+

λ to CAR(hac) andCAR(hpp). η+
λ,ac is the quasi-free state

generated byT+
λ ≡ (Ω−

λ )∗TΩ−
λ . If A is of the form (71) andφj , ψi ∈ hpp, then

η+
λ,pp(A) = δn,m lim

t→∞

1

t

∫ t

0

det{(eishλψi|T eishλφj)}ds.

Clearly,η+
λ,ac is τλ,ac invariant andη+

λ,pp is τλ,pp invariant. Expanding the determi-

nant in (72) one can easily see thatη+
λ,ac andη+

λ,pp uniquely determineη+
λ .
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While the stateη+
λ,pp obviously depends on the choice ofα and onTR|hsing(hR)

in T = α⊕ TR, the stateη+
λ,ac does not. In fact, ifη is any initial state normal w.r.t.

ηT , then forA ∈ CAR(hac),

lim
t→∞

η(τ tλ(A)) = η+
λ,ac(A).

For a finite rank operatorA ≡∑j φj(ψj | · ) one has

η+
λ (dΓ(A)) =

∑

j

η+
λ (a∗(φj)a(ψj)),

and so

η+
λ (dΓ(A)) =

∑

j




∑

e∈spp(hλ)

(Peψj |TPeφj) + (Ω−
λ ψj |TΩ−

λ φj)



 .

The conclusion is that in the presence of eigenvalues one needs to add the term

∑

j

∑

e∈spp(hλ)

(Peψj |TPeφj),

to Equ. (62),i.e., we obtain the following formula generalizing Equ. (62),

η+
λ (dΓ(A)) = Tr






T




∑

e∈spp(hλ)

PeAPe +Ω−
λ AΩ

−
λ

∗










. (74)

Note that if for some operatorq, A = i[hλ, q] in the sense of quadratic forms on
Domhλ, thenPeAPe = 0 and eigenvalues do not contribute toη+

λ (dΓ(A)). This is
the case of the current observablesdΓ(fk) anddΓ(jk) of Subsection 5.3. We con-
clude that the formulas (66) and (68), which we have previously derived under the
assumptionspsing(hλ) = ∅, remain valid as long asspsc(hλ) = ∅, i.e., they are not
affected by the presence of eigenvalues.

5.5 Thermodynamics in the non-perturbative regime

The results of the previous subsection can be summarized as follows.
If spsc(hλ) = ∅ andsppp(hλ) 6= ∅ then, on the qualitative level, the thermo-

dynamics of the SEBB model is similar to the casespsing(hλ) = 0. To construct
NESS one takes the ergodic averages of the statesηT ◦ τ tλ. The NESS is unique. The
formulas for steady currents and entropy production are notaffected by the point
spectra and are given by (66), (68), (70) and (67) or (69) for all λ 6= 0. In partic-
ular, the NESS and thermodynamics are well defined for allλ 6= 0 and all ω. One
can proceed further along the lines of [AJPP1] and study the linear response theory
of the SEBB model (Onsager relations, Kubo formulas, etc) inthe non-perturbative
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regime. Given the results of the previous subsection, the arguments and the formulas
are exactly the same as in [AJPP1] and we will not reproduce them here.

The study of NESS and thermodynamics is more delicate in the presence of sin-
gular continuous spectrum and we will not pursue it here. We wish to point, however,
that unlike the point spectrum, the singular continuous spectrum can be excluded in
”generic” physical situations. Assume thatX is an open set and that the absolutely
continuous spectrum ofhR is ”well-behaved” in the sense thatImFR(x + i0) > 0
for Lebesgue a.e.x ∈ X. Then, by the Simon-Wolff theorem 5,hλ has no singu-
lar continuous spectrum for Lebesgue a.e.λ ∈ R. If f is a continuous function and
dµR = dx, thenhλ has no singular continuous spectrum for allλ.

5.6 Properties of the fluxes

In this subsection we consider an SEBB model without singular continuous spec-
trum, i.e, we assume thatspsc(hλ) = ∅ for all λ andω. We will study the properties
of the steady currents as functions of(λ, ω). For this reason, we will again indicate
explicitly the dependence onω.

More precisely, in this subsection we will study the properties of the function

(λ, ω) 7→ η+
λ,ω(F), (75)

whereF is one of the observablesFk orJk for a givenk. For simplicity of exposition,
besides Assumption (A1) we assume that the functions

gj(t) ≡
∫

X

e−itx‖fj(x)‖2
Kj

dx,

are inL1(R,dt) and that‖f(x)‖K is non-vanishing onX. We also assume that the
energy densities̺j(x) of the subreservoirs are bounded continuous functions onX
and that the functions(1 + |x|)̺j(x) are integrable onX. According to Equ. (66),
(68) and (67), one has

η+
λ,ω(F) = 2πλ4

M∑

j=1

∫

X

‖fk(x)‖2
Kk

‖fj(x)‖2
Kj
|Fλ(x+ i0)|2xn(̺k(x) − ̺j(x)) dx,

wheren = 0 if F = Jk andn = 1 if F = Fk.
Obviously, the function (75) is real-analytic onR×R\X and for a givenω 6∈ X,

η+
λ,ω(F) = O(λ4), (76)

asλ→ 0. The function (75) is also real-analytic onR\{0}×R. Forω ∈ X, Lemma
3 shows that

lim
λ↓0

λ−2η+
ω,λ(F) = 2π

M∑

j=1

‖fk(ω)‖2
Kk

‖fj(ω)‖2
Kj

‖f(ω)‖2
K

ωn(̺k(ω) − ̺j(ω)). (77)
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Comparing (76) and (77) we see that in the weak coupling limitwe can distin-
guish two regimes: the ”conducting” regimeω ∈ X and the ”insulating” regime
ω 6∈ X. Clearly, the conducting regime coincides with the ”resonance” regime for
hλ,ω and, colloquially speaking, the currents are carried by theresonance pole. In
the insulating regime there is no resonance for smallλ and the corresponding heat
flux is infinitesimal compared to the heat flux in the ”conducting” regime.

Forx ∈ X one has

λ4|Fλ(x+ i0)|2 =
λ4

(ω − x− λ2ReFR(x+ i0))2 + λ4π2‖f(x)‖4
K

.

Hence,

sup
λ∈R

λ4|Fλ(x+ i0)|2 =



π
M∑

j=1

‖fj(x)‖2
Kj





−2

, (78)

and so

λ4‖fk(x)‖2
Kk

‖fj(x)‖2
Kj
|Fλ(x+ i0)|2 ≤ 1

π2
.

This estimate and the dominated convergence theorem yield that for allω ∈ R,

lim
|λ|→∞

η+
λ,ω(F) = 2π

M∑

j=1

∫

X

‖fk(x)‖2
Kk

‖fj(x)‖2
Kj

|FR(x+ i0)|2 xn(̺k(x) − ̺i(x)) dx. (79)

Thus, the steady currents are independent ofω in the strong coupling limit. In the
same way one shows that

lim
|ω|→∞

η+
λ,ω(F) = 0, (80)

for all λ.
The cross-over between the weak coupling regime (77) and thelarge coupling

regime (79) is delicate and its study requires detailed information about the model.
We will discuss this topic further in the next subsection.

We finish this subsection with one simple but physically important remark. As-
sume that the functions

Cj(x) ≡ 2π‖fk(x)‖2
Kk

‖fj(x)‖2
Kj
xn(̺k(x) − ̺j(x)),

are sharply peaked around the pointsxj . This happens, for example, if all the reser-
voirs are at thermal equilibrium at low temperatures. Then,the flux (75) is well ap-
proximated by the formula

η+
λ,ω(F) ≃

M∑

j=1

λ4|Fλ(xj)|2
∫

X

Cj(x) dx,

and since the supremum in (78) is achieved atω = x + λ2ReFλ(x + i0), the flux
(75) will be peaked along the parabolic resonance curves

ω = xj + λ2ReFλ(xj + i0).
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5.7 Examples

We finish these lecture notes with several examples of the SEBB model which we
will study using numerical calculations. For simplicity, we will only consider the
case of two subreservoirs,i.e., in this subsectionK = C

2 = C ⊕ C. We also take

f(x) = f1(x) ⊕ f2(x) ≡
1√
2

(
f0(x)

0

)

⊕ 1√
2

(
0

f0(x)

)

,

so that

‖f1(x)‖2
K1

= ‖f2(x)‖2
K2

=
1

2
‖f(x)‖2

K =
1

2
|f0(x)|2.

Example 1.We consider the fermionic quantization of Example 1 in Subsection 3.5,
i.e.,hR = L2(]0,∞[,dx; C2) and

f0(x) = π−1/2(2x)1/4(1 + x2)−1/2.

We put the two subreservoirs at thermal equilibrium

̺j(x) =
1

1 + eβj(x−µj)
,

where we set the inverse temperatures toβ1 = β2 = 50 (low temperature) and the
chemical potentials toµ1 = 0.3, µ2 = 0.2. We shall only consider the particle flux
(n = 0) in this example. The behavior of the heat flux is similar. Thefunction

C2(x) = 2π‖f1(x)‖2
K1
‖f2(x)‖2

K2
(̺1(x) − ̺2(x)) =

x(̺1(x) − ̺2(x))

π(1 + x2)2
,

plotted in Figure 11, is peaked atx ≃ 0.25. In accordance with our discussion in the
previous subsection, the particle current, represented inFigure 12, is sharply peaked
around the parabolaω = x+ 2λ2(1 − x)/(1 + x2) (dark line). The convergence to
anω-independent limit asλ → ∞ and convergence to0 asω → ∞ are also clearly
illustrated.

Example 2.We consider now the heat flux in the SEBB model corresponding to
Example 2 of Subsection 3.5. HerehR = L2(] − 1, 1[,dx; C2),

f0(x) =

√

2

π
(1 − x2)1/4,

and we choose the high temperature regime by settingβ1 = β2 = 0.1, µ1 = 0.3 and
µ2 = 0.2. Convergence of the rescaled heat flux to the weak coupling limit (77) is
illustrated in Figure 13. In this case the functionC2 is given by

C2(x) =
2

π
x(1 − x2)(̺1(x) − ̺2(x)),
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Fig. 11.The functionC2(x) in Example 1.

Fig. 12.The particle flux in Example 1.



Mathematical Theory of the Wigner-Weisskopf Atom 63

0

0.5

1

−101
−3

−2

−1

0

1

2

3

x 10
−3

λω

H
ea

t f
lu

x 
/ λ

2

Fig. 13.The rescaled heat flux (weak coupling regime) in Example 2.
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Fig. 14.The functionC2(x) in Example 2.
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Fig. 15.The heat flux in Example 2.

and is completely delocalized as shown in Figure 14.
Even in this simple example the cross-over between the weak and the strong

coupling regime is difficult to analyze. This cross-over is non trivial, as can be seen
in Figure 15. Note in particular that the functionλ 7→ η+

λ,ω(F) is not necessarily
monotone and may have several local minima/maxima before reaching its limiting
value (79) as shown by the sectionω = 0.5 in Figure 15.

Example 3.In this example we will discuss the large coupling limit. Note that in the
case of two subreservoirs Equ. (79) can be written as

lim
|λ|→∞

η+
λ,ω(F) =

1

2π

∫

X

sin2 θ(x)xn(̺1(x) − ̺2(x)) dx, (81)

whereθ(x) ≡ Arg(FR(x + i0)). Therefore, large currents can be obtained if one
of the reservoir, sayR1, has an energy distribution concentrated in a region where
ImFR(x+i0) ≫ ReFR(x+i0) while the energy distribution ofR2 is concentrated
in a region whereImFR(x+ i0) ≪ ReFR(x+ i0).

As an illustration, we consider the SEBB model corresponding to Example 3 of
Subsection 3.5,i.e., hR = L2(] − 1, 1[,dx; C2) and

f0(x) =

√

1

π
x(1 − x2)1/4.

From Equ. (54) we obtain that
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FR(x+ i0) = −x
(

x2 − 1

2

)

+ ix2
√

1 − x2.

Hence,
sin2 θ(x) = 4x2(1 − x2),

reaches its maximal value1 at energyx = ±1/
√

2.
We use the following initial states: the first subreservoir has a quasi-monochromatic

energy distribution
̺1(x) ≡ 3 e−1000(x−Ω)2 ,

at energyΩ ∈ [−1, 1]. The second subreservoir is at thermal equilibrium at low
temperatureβ = 10 and chemical potentialµ2 = −0.9. Thus,̺2 is well localized
near the lower band edgex = −1 wheresin θ vanishes. Figure 16 shows the limiting

−1  −0.7 0   0.7 1   

−0.01

0

0.01

0.02

0.03

Ω

← particle flux 

heat flux → 

Fig. 16.The limiting particle and heat fluxes in Example 3.

currents (81) as functions ofΩ, with extrema near±1/
√

2 ≃ ±0.7 as expected.
Another feature of Figure 16 is worth a comment. As discussedin Example 3 of

Subsection 3.5, this model has a resonance approaching0 asλ→ ∞ andλ4|Fλ(0 +
i0)|2 → |FR(0 + i0)|2 = ∞. However, since

‖fj(0)‖2
Kj

= ImFR(0 + i0)/2π = 0,

we have

sin θ(0) = lim
x→0

ImFR(x+ i0)

|FR(x+ i0)| = 0, (82)

and the large coupling resonance near zero does not lead to a noticeable flux en-
hancement. This can be seen in Figure 16 by noticing that the fluxes at the resonant
energyΩ = 0 are the same as at the band edgesΩ = ±1. It is a simple exercise
to show that (82) is related to the fact that the resonance pole of Fλ approaches0
tangentially to the real axis (see Figure 10).
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In fact, the following argument shows that this behavior is typical. Assume that
FR(z) has a meromorphic continuation from the upper half-plane acrossX with
a zero atω ∈ X (we argued in our discussion of Example 3 in Subsection 3.5
that this is a necessary condition forω to be a large coupling resonance). Since
ImFR(x+iy) ≥ 0 for y ≥ 0, it is easy to show, using the power series expansion of
FR aroundω, that(∂zFR)(ω) > 0. Combining this fact with the Cauchy-Riemann
equations we derive

∂xReFR(x+ i0)|x=ω > 0, ∂xImFR(x+ i0)|x=ω = 0,

and so
sin θ(ω) = 0.

Thus, in contrast with the weak coupling resonances, the strong coupling resonances
do not induce large currents.
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